TO NGIN BLANCE OF THE PROPERTY OF THE PROPERTY

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad).

NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

5.1.1:Number of students benefitted by scholarships and Freeships provided by the institution Government and Non-Government bodies, industries, individuals, philanthropists during the Academic year 2022-2023

INDEX

S.NO	Name of the scheme	No of Benefited students	Amount(RS.)	Page No.
1	AIET Freeship Policy	All Freeship and merit scholarship students		2-3
2	Model Freeship Question Paper			4-10
3	Model Freeship Student Papers			11-31
4	Qualified Freeship Merit List and Test Marks			32-37
5	Freeship students with sanctioned Amount	205	Rs.43,58,500	38-44
6	Freeship to poor and economically backward students.	475	Rs. 99,58,500	45-66
7	Merit scholarship students list with amount	32	Rs.1,28,000	67-69
	Total Students Count :	712	Rs.1,44,45,000	

PRINCIPAL

Avanthi Institute of Engg. & Tech Gunthapally (V), Abdullapurmet (Mdl), R.R. Dist.

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

09-03-2018

AVANTHI FREESHIP & MERIT SCHOLARSHIP POLICY

OBJECT

The goal of the scheme is to offer financial assistance to scheduled college students studying in Avanti Institute of engineering and technology to finish their education.

SCOPE

These ships are available for the students and are awarded based on evaluation of test result which is organized by Avanthi educational society. This is relevant to all the students who are presently beneficiaries of the scheme as well as fresh admissions. Merit scholarship scheme is to help meritorious students to finish their B. Tech without monetary burden. Our institution committed to provide freeships to poor and economically backward students. It is applicable to the students who do not have parents or either father or mother has lost their lives they could avail the opportunity. We also offer freeships whose parental annual income less than one lakh. We ensure that this financial support will helps the students to reach their goals

STUDENT FRESSHIP FRAMEWORK

At Avanthi Institute of Engineering & Technology, we comply with a Unified Student Freeship Framework to ensure that the deserving candidates get the specified financial assistance. The framework is approved under the following conditions:

- 1. Admissions via freeship could be offered on a first-come, first-served foundation.
- 2. Admissions through freeships are limited up to 30% of the approved programme intake.
- 3. Students those who secure University ranks shall be honored with cash prize and merit certificate
- 4. Students topped in their subjects/branch of engineering shall be honored with cash prize and merit certificate.
- 5. The Students from rural background and economically poor shall be supported to pursue engineering course by providing tuition fee concessions
- 6. The employees children of the institution shall be constitute of Engg. & Technical assistance.

 Avanthi Institute of Engg. & Technique (Mdl) R.R.Dist

Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

- 7. Financial assistance shall be provided to the needy students to take up quality project.
- 8. Financialassistance shall be provided to the students those are eligible for placements to attend training programs.
- 9. The freeships offered through AF is applicable for the First Year only. The same scholarship will be continued in the subsequent years of study based on the student performance.
- 10. After first year, and for the consequent years, the student must attain the attendance percentage >75 in previous academic year and maximum of 3 backlogs only considered to avail free ships further, and they must clear all subjects and should not have more than two backlogs in the previous academic year.
- 11. Apart from these, special requests for financial support shall be considered with Principal's/Management recommendations on valid reasons.

STUDENT MERIT SCHOLARSHIP FRAMEWORK

The merit scholarship will be provided for all First and Second TOPPERS of the students year wise and branch wise.

- 1. For 1st TOPPER awarded ----- 5000 /- Rs
- 2. For 2nd TOPPER awarded----- 3000/- Rs

The Avanthi Freeship Internal Policy is adapted on this day the 9th of March 2018 at Avanthi Institute of Engineering and Technology, Gunthapally(Vil), Abdullapurmet (Mdl), RR Reddy 501512. According to the Merit Scholarship policy those who are academic year wise toppers the Avanthi Educational Society give merit Scholarship awards to academic toppers on Anniversary day.

PRINCIPAL

Avanthi Institute of Engg. & Tech
Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

FREESHIP NO

Duration:180 Min

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

	AVA
See .	

NAME OF THE STUDENT:_

A. a rectangular hyperbola

A. $2xyy' + x^2 = y^2$

B. $2xyy'' + x' = y^2$ C. $2xyy' - x^2 = y^2$ D. $xyy' + x^2 = y^2$

a. 3

b. 2

A. 0

B. 1

5) If $\int 2^{x} dx = f(x) + C$, then f(x) is

b. 2^x log_e2 c. 2^x/log_e2

 $6)\int^2 (x^2 + 3) dx$ equals

a. 24/3

b. 25/3

B. parabola whose vertex is at the origin

D. a circle whose centre is at the origin

C. straight line passing through the origin

QUESTION PAPER NAME: ENGINEERING

1) Solution of differential equation x.dy-y.dx = Q represents:

2) What is the differential equation of the family of circles touching the y-axis at the origin?

3) The number of arbitrary constants in the particular solution of a differential equation of third order is:

c. 1

d. 0

D. 3

d. $2^{x+1}/x+1$

c. 26/3

d. None of the above...

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

Date:	7)The area of a triangle with ver	rtices (-3, 0), (3, 0) and (0, k) is 9 sq. units. The value of k will be
2022-23 MODEL FREESHIP QUESTION PAPER Total Marks: 100	(a) 9	(c) -9

8) If $x \sin(a+y) = \sin y$, then dy/dx is equal to

9) The function $f(x) = [\ln(1+ax)-\ln(1-bx)]/x$, not defined at x=0. The value should be assigned to f at x=0, so that it is continuous at x = 0, is

10) If $y = ax^2 + b$, then dy/dx at x = 2 is equal to

11) The value of c in Rolle's theorem for the function, $f(x) = \sin 2x$ in $[0, \pi/2]$ is

12)If
$$x = t^2$$
, $y=t^3$, then $d^2y/dx^2 =$

a.	3/2	c.	3/2t
b.	3/4t	d.	3t/2

13). If A is a square matrix of order 3 and |A| = 5, then the value of |2A'| is

14)If
$$[2\diamondsuit+\diamondsuit\diamondsuit-2\diamondsuit5\diamondsuit-\diamondsuit4\diamondsuit+3\diamondsuit]=[4-31124]$$
, then the value of $p+q-r+2s$ is

PRINCIPAL

(d) - 8

(c) 4

Avanthi Institute of Engg. & Tech

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad)

NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.con

15)-8If A and B are two matrices of the order 3 × m	and 3 × n, respectively	, and $m = n$,	then the order of
matrix (5A – 2B) is			

(a) $m \times 3$

(c) $m \times n$

(b) 3×3

(d) $3 \times n$

16)The value of the expression sin [cot⁻¹ (cos (tan⁻¹ 1))] is

(a) 0

(c) 1/\square

(b) 1

(d) $\sqrt{(2/3)}$

17)Which of the following is the principal value branch of cos⁻¹x?

(a) $[-\pi/2, \pi/2]$

(c) $[0, \pi]$

(b) $(0, \pi)$

(d) $(0, \pi) - {\pi/2}$

18) If $\sin^{-1} x + \sin^{-1} y = \pi/2$, then value of $\cos^{-1} x + \cos^{-1} y$ is

(a) $\pi/2$

(c)0

(b) π

(d) $2\pi/3$

Therefore, $\cos^{-1} x + \cos^{-1} y = \pi/2$.

19) The domain of $\sin^{-1}(2x)$ is

(a) [0, 1]

(c) [-1/2, 1/2]

(b) [-1, 1]

(d) [-2, 2]

20) The maximum number of equivalence relations on the set $A = \{1, 2, 3\}$ are

(a) 1

(c) 3

(b) 2

(d) 5

21)If set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is

(a) 720

(c) 0

(b) 120

(d) none of these

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad)

NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.ayanthi@gmail.com

22)Events A and B are said to be mutually exclusive if:

A.P(AUB)=PA.+PB.

C.P(AUB)=0

 $B.P(A \cap B)=PA.\times PB.$

D. None of these

23) What is the probability of getting the number 6 at least once in a regular die if it can roll it 6 times?

A. $1 - (5/6)^6$

 $C. (5/6)^6$

B. $1 - (1/6)^6$

D. $(1/6)^6$

24)A bag contains 5 brown and 4 white socks. Ram pulls out two socks. What is the probability that both the socks are of the same colour?

A. 9/20

C. 3/20

B. 2/9

D. 4/9

25) If the variance of the data is 121, the standard deviation of the data is:

(a) 121

(c) 12

(b) 11

(d) 21

26): Relation between mean, median and mode is given by:

(a) Mode = 2 Median - 3 Mean

(b) Mode = 2 Median + 3 Mean

(c) Mode = 3 Median - 2 Mean

(d) Mode = 3 Median + 2 Mean

27) The negation of the statement "7 is greater than 8" is

(a) 7 is equal to 8.

(c) 8 is less than 7.

(b) 7 is not greater than 8.

(d) none of these

28) Which of the following is not a statement?

(a) Smoking is injurious to health.

(c) 2 is the only even prime number.

(b) 2 + 2 = 4

(d) Come here.

PRINCIPAL

Avanthi Institute of Engg. & Tech.
Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

Avanthi Institute of Engineering and Technology

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

29). Which of the following is a statement?

(a) Roses are black.

(c) Be punctual.

(b) Mind your own business.

(d) Do not tell lies.

30) The derivative of $x^2 \cos x$ is

(a) $2x \sin x - x^2 \sin x$

(c) $2x \sin x - x^2 \cos x$

(b) $2x \cos x - x^2 \sin x$

(d) $\cos x - x^2 \sin x \cos x$

31) The centre of the circle $4x^2 + 4y^2 - 8x + 12y - 25 = 0$ is

a. (-2, 3) b. (1, -3/2)

c. (-4, 6)

d. (4, -6)

32) The parametric equation of the parabola $y^2 = 4ax$ is

a. x = at; y = 2atb. $x = at^2$; y = 2at

33)Two lines are said to be parallel if the difference of their slope is

a. -1 b. 0

d. None of these

34) What is the distance of (5, 12) from the origin?

5 units

12 units

8 units

13 units

35) The largest coefficient in the expansion of $(1+x)^{10}$ is:

a. 10! / (5!)²
b. 10! / 5!

c. 10! / (5!×4!)²
d. 10! / (5!×4!)

36) If n is even in the expansion of (a+b)ⁿ, the middle term is:

a. nth term b. (n/2)th term

c. [(n/2)-1]th term d. [(n/2)+1]th term

37) The value of $(126)^{1/3}$ up to three decimal places is

a. 5.011

c. 5.013

b. 5.012

d. 5.014

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal avanthi@gmail.com

38) The number of squares that can be formed on a chessboard is

a. 64 b. 160

- c. 204 d. 224

39)If $^{n}P_{5} = 60^{n-1}P_{3}$, the value of n is

a. 6

- c. 12 d. 16
- 40) Number of solutions of the equation $z^2 + |z|^2 = 0$ is
- (a) 1

(c) 3

(b) 2

(d) infinitely many

41) If 1 - i, is a root of the equation $x^2 + ax + b = 0$, where a, b R, then the value of a - b is

(a) -4

(c) 2

(b) 0

(d) 1

42) For any natural number n, $2^{2n} - 1$ is divisible by

(a) 2

(c) 4

(b) 3

(d) 5

43)If $\tan A = 1/2$ and $\tan B = 1/3$, then the value of A + B is

(a) $\pi/6$

(c)0

(b) π

(d) $\pi/4$

44) If $\sin \theta$ and $\cos \theta$ are the roots of $ax^2 - bx + c = 0$, then the relation between a, b and c will be

(a) $a^2 + b^2 + 2ac = 0$

(c) $a^2 + c^2 + 2ab = 0$

(b) $a^2 - b^2 + 2ac = 0$

(d) $a^2 - b^2 - 2ac = 0$

45)If $f(x) = x^2 + 2$, $x \in \mathbb{R}$, then the range of f(x) is

(a) [2, ∞)

(c) (2, ∞)

(b) (-∞, 2]

(d) $(-\infty, 2)$ U $(2, \infty)$

46) What will be the domain for which the functions $f(x) = 2x^2 - 1$ and g(x) = 1 - 3x are equal?

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

(a) {-2,	1}		(c) [2, 12]		
(b) {1/2	, -2}				
the zeros a.only re b.only po c.only ra d.only co	s of the polyno cal numbers urely imaginar ational number complex number	s rs of the form a+ib with a=/0) and b=/0		
48)In a t intersect	riangle ABC,I ion of AD and	and E divide the sides BC a BE then the ratio in which I	and CA in the ratio 2:1 respectively divides AD is	pectively .if P is th	e point of
a.2:1 b.3:4			c.4:3 d.1:2		
49)if the	incentre and th	e circumstances of the triangl	e forms by the lines $x=2$,		
4x+3y+7	=0 and I and S	respectively ,then IS=			
a.5 b.√5			c.4√2 d.2√5		
	quation $x^2 - y^2$	+ ax+b=0 represents a pair of	f lines fpr the ordered pair (a,b)=	
a.(2,6) b.(3,4)			c.(4,8) d.(6,9)		
		PHYSICS			
51).SI	unit of the ma	gnetic field is			
	Dyne Ohm		c. Tesla d. Volt		
52)Mag	netic field at a	ny point inside the straight se	olenoid is given as-	•);	
	$\begin{aligned} \mathbf{B} &= \mu_0 + nI \\ \mathbf{B} &= \mu_0 + n + I \end{aligned}$		c. $\mathbf{B} = \mu_0/n$ d. $\mathbf{B} = \mu_0 n \mathbf{I}$		
53)Whe	n the charged	particles move in a combine	d magnetic and electric fie	ld, then the force a	cting is

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

54) Which one has higher kir	etic energy? Both	light and heavy	bodies have e	qual momenta.

a. Heavy body

d. None of the options

- b. Light body
- c. Both

.55)State true or false: According to Equivalence of Mass and Energy, it states that mass and energy are NOT interconvertible.

- a. True
- b. False

56)Find the power if the work done is 20j per hour

a. 100 W

c. 20 W

b. 200 W

d. 500 W

57). Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground.

a. 121.20 J

c. 227.31 J

b. 147.15 J

d. 182.21 J

58). If 2.2 kilowatt power is being transmitted at 44KV on a 20 ohm line, then power loss will be

(a) 0.1 watt

(c) 100 watt

(b) 1.4 watt

(d) 0.05 watt

59) Which one has higher kinetic energy? Both light and heavy bodies have equal momenta.

a. Heavy body

b. Light body

d None of the options

60)State true or false: According to Equivalence of Mass and Energy, it states that mass and energy are NOT interconvertible.

- a. True
- b. False

61) What is the power utilised when work of 1000 J is done in 2 seconds?

a. 100 W

c. 20 W

b. 200 W

d. 500 W

62) Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground.

121.20 J

c. 227.31 J

b. 147.15 J d. 182.21 J

Avanthi Institute of Engg. & Tech.
Guntihapally (V), Abdullapurmet (Mdl) R.R.Dist

a) Centripetal force

b) entrifugal force c) Lorentz force

d) Orbital force

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

63)The energy possessed by the body by virtue of its	motion is known as?	
a. Chemical energy	c. Potential energy	
b. Thermal energy	d. Kinetic energy	
o. Thermal energy	5,	
64) Which one has higher kinetic energy? Both light a	nd hours, hodies have equal momenta	× .
64) which one has higher kinetic energy? Both light a	nd heavy bodies have equal momenta	
a Haayay bady	c. Both	
a. Heavy body	d. None of the options	
b. Light body	u. Note of the options	
65)State true or false: According to Equivalence of Minterconvertible.	ass and Energy, it states that mass and e	nergy are NOT
a. True		
b. False		
66) What is the power utilised when work of 1000 J is	done in 2 seconds?	
	c. 20 W	
a. 100 W	d. 500 W	
b. 200 W		
67). Find the potential energy stored in a ball of mass	5 kg placed at a height of 3 m above the	
ground.	100000000000000000000000000000000000000	
	c. 227.31 J	
a. 121.20 J	d. 182.21 J	
b. 147.15 J		
68)Water is flowing with a velocity of 3m/s in a pipe of d 2 cm. The velocity of water in this tube is	() 2	
(a) 12 m/s	(c) 3 m/s	
(b) 6 m/s	(d) 1.5 m/s	PRINCIPAL
com 1 1 10 W		No.
69)The physical Quantity is	0.17.1	
a. Mass	c. Solid angle	DDINCIPAL
b. Time	d. Luminosity	PKINOTIAL

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

70)Th	e syr	nbol to represent "Amount of Substance" is _			
a.	K		c.	Cd	
b.	A		d.	Mo	ol
71)am	ong	the following is the Supplementary Unit-			
	Ma				lid angle
b.	Tin	ne	d.	Lu	minosity
72)syn	nbol	to represent "Amount of Substance" is			
		K			Cd
	b.	A		d.	mol
73)Far	ad is	s the unit of			
		Luminosity			Permittivity
	b.	Wavelength	d .Ine	tia	
74)Dir	nens	ions of kinetic energy is the same as that of_	(KENT)	Ŋ.	
					Work
		Acceleration		d.	Force.
	b.	Velocity			
75)AU	l is t	he unit of			
		Astronomy Unit		c.	Astrological Unit
		Astronomical unit			
	d.	Archaeological Unit			
76)Giv	e ar	example of motion in two dimensions			
	a.	Motion along a straight line in any			A flying kite
		direction		d.	Projectile motion
	b.	Bird flying			÷
77) M		in a plane is called			
		Motion in one dimension			Motion in three dimensions
	b.	Motion in two dimensions		d.	Motion in four dimensions
- 2		n circular motion is given by the formula			
a	V=	u+atb.v²-u²=2AS C.V-U=A d.none			
0 Too	h				

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad)

NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

79) Find the general solution of: ax²+bx+c

A. $\sin^{-1} y = x + c$

C. $\sin^{-1} y^2 = x +$

B. $\sin^{-1} y/2 = x + c$

D. None of the above

80) Hydraulic brakes work on the principal of

(a) Pascal's Law

(c) Newton's Law

(b) Thomson's Law

(d) Bernouli's Theorem

CHEMISTRY

81)If liquids A and B form an ideal solution

- (a) The entropy of mixing is zero
- (b) The free energy of mixing is zero
- (c) The free energy as well as the entropy of mixing
- (d) The free energy mixing is maximum

82) For an ideal gas, CV and CP are related as:

(a) $C_V-C_P=R$

(c) $C_P - C_v = RT$

(b) $C_V + C_P = R$

(d) $C_P - C_v = R$

83)Gases deviate from ideal behaviour because molecules-

a) are colourless

(c) attract each other

(b) are spherical

(d) have high speeds

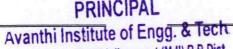
84) Which of the following molecules have trigonal planar geometry?

(a) BF₃

(c) PCl₃

(b) NH₃

(d) IF


85) The elements with atomic numbers 9, 17, 35, 53, 85 are all

(a) halogens

(c) alkali earth metals

(b) noble gases

(d) transition metals

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad)

NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

86)Isotopes of an element have ———	
(a) Different chemical and physical properties	
(b) Similar chemical and physical properties	
(c) Similar chemical but different physical prop	erties
(d) Similar physical but different chemical prop	erties
87)The radius of an atomic nucleus is of the ord	der of
(a) 10 ⁻¹⁰ cm	(c)10 ⁻¹⁵ cm
(b) 10 ⁻¹³ cm	(d) 10 ⁻⁸ cm
88)The significant figures in 0.00051 are	-
(a) 5	(c) 2
(b) 3	(d) 26
89)A pure substance which contains only one ty	pe of atom is called ———.
(a) An element	(c) a solid
(b) a compound	(d) a liquid93.
90)Which of the following statements concerning	ng transuranium elements is incorrect?
a) Atomic number > 92	
b) Example is Thorium	
c) Decay radioactively as they are unstable	
d) Elements after Uranium	
91)When copper chips are exposed to concen	trated nitric acid, which gas is produced?
a) Nitrogen (III) oxide	c) Nitrogen (I) oxide
L) Nitrogen (IV) evide	d) Nitrogen (II) ovide

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

92)What happens to the size of atoms in p-block elements when we move from left to right in the same

period?		98)When two
a) Size does not change		as a result?
b) Size increases then decreases		a) V
c) Size increases		b) 2V
d) Size decreases		
		99)The electro
93)In 30 minutes, a first-order reaction is 5 complete 87.5 percent of the reaction.	50% complete. Calculate the amount of time it took to	a. They j
a) 30 minutes	c) 90 minutes	b. They i
b) 60 minutes	d) 120 minutes	d. Escape
		100)Electrons
94)Only a simple homogeneous reaction re	equires which of the following methods?	N. 1
a) Integration method	c) Graphical method	a. Nuclea b. Coulo
b) Half-life period method	d) Ostwald's isolation method	c. Gravit d. Van D
		d. Van D
95). What effect does temperature have on t	the half-life of a first-order reaction?	
a) It increases	c) It remains the same	
b) It decreases	d) Both increases as well as decrease	
96)In 30 minutes, a first-order reaction is 5 complete 87.5 percent of the reaction.	60% complete. Calculate the amount of time it took to	
a) 30 minutes	c) 90 minutes	
b) 60 minutes	d)120 minutes	
97)The heat of solution or mixing has a neg	gative side.	CIPAL & Tech
a) Heat of solution	c) Heat of reaction	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
b) Heat of dissolution	d) Heat of mixing	ICIPAL & Tech
	PRIN	of Engg. Will R.R. Dist
Avanthi Institute of	Engineering and Technology	ACIPAL Ate of Engg. & Tech Ate of Engg. & Tech Abdullapurmet (Mdl) R.R. Disk
	Coutipsbally (A)	
	Qui	

NTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal ayanthi@gmail.com

98) When two perfect solutions with volume V each are combined, What is the volume of the solution as a result?

c) Greater than 2V

d) Less than 2V

99)The electrons of Rutherford's model would be expected to lose energy because

- a. They jump on the nucleus
- b. They move randomly
- c. Radiate electromagnetic waves
- d. Escape from the atom

100)Electrons in the atom are held to the nucleus by

- a. Nuclear Force
- b. Coulomb's Force
- c. Gravitational Force
- d. Van Der Waal's Force

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

2022-23 MODEL FREESHIP QUESTION PAPER **QUESTION PAPER NAME: ENGINEERING**

Duration:180 Min

FREESHIP NO AVIH 2022137

A. a rectangular hyperbola

B. parabola whose vertex is at the origin

straight line passing through the origin

D. a circle whose centre is at the origin

2) What is the differential equation of the family of circles touching the y-axis at the origin?

$$x \cdot 2xyy' + x^2 = y^2$$

B.
$$2xyy'' + x' = y^2$$

C. $2xyy' - x^2 = y^2$
D. $xyy' + x^2 = y^2$

C.
$$2xyy' - x^2 = y^2$$

D. xyy' +
$$x^2 = y^2$$

3)The number of arbitrary constants in the particular solution of a differential equation of third order is:

- a. 3
- b. 2

4) Find the degree of the differential equation: (1+2+2+2)3=(2+2+2)4=(2+2+2)4(

5) If
$$\int 2^x dx = f(x) + C$$
, then $f(x)$ is

$$6)\int^2 (x^2 + 3) dx equals$$

- a. 24/3 25/3

d. None of the above..

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

7) The area of a triangle with vertices (-3, 0), (3, 0) and (0, k) is 9 sq. units. The value of k will be

(a) 9

(c) -9

(b) 3

(d) 6

8) If $x \sin(a+y) = \sin y$, then dy/dx is equal to

a. $[\sin^2(a+y)]/\sin a$ b. $\sin a / [\sin^2(a+y)]$

c. [sin(a+y)]/sin a

d. sin a /[sin(a+y)]

9) The function $f(x) = [\ln(1+ax) - \ln(1-bx)]/x$, not defined at x=0. The value should be assigned to f at x=0, so that it is continuous at x = 0, is

a.a+b

b.a-b

c. b-a $d. \ln a + \ln b$

10) If $y = ax^2 + b$, then dy/dx at x = 2 is equal to

a. 2a

b. 3a d. None of these

11) The value of c in Rolle's theorem for the function, $f(x) = \sin 2x$ in $[0, \pi/2]$ is a. \pi/4

b. π/6

d. π/3

12) If $x = t^2$, $y = t^3$, then $d^2 y/dx^2 =$

c. 3/2t d. 3t/2

13). If A is a square matrix of order 3 and |A| = 5, then the value of |2A'| is

(a) -10

(c) -40

(b) 10

fett 40

14)If [2 + 4 + 2 + 5 + 4 + 3 + 3 + 2] = [4 - 31124], then the value of p + q - r + 2s is

-(a) 8

(c) 4

(b) 10

(d) - 8

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad)

NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

15)-8If A and B are two matrices of the order $3 \times m$ and $3 \times n$, respectively, and m = n, then the order of matrix (5A - 2B) is

(a) m \times 3

(c) m ×

(b) 3×3

(d) $3 \times n$

16)The value of the expression $\sin \left[\cot^{-1} \left(\cos \left(\tan^{-1} 1\right)\right)\right]$ is

(a) 0

(c) 1/\3

(b) 1

(a) √(2/3)

17) Which of the following is the principal value branch of cos⁻¹x?

(a) $[-\pi/2, \pi/2]$

(c) [0, n)

(b) $(0, \pi)$

(d) $(0, \pi) - {\pi/2}$

18) If $\sin^{-1} x + \sin^{-1} y = \pi/2$, then value of $\cos^{-1} x + \cos^{-1} y$ is

 $(a) \pi/2$

(c) 0

(b) π

(d) $2\pi/3$

Therefore, $\cos^{-1} x + \cos^{-1} y = \pi/2$.

19) The domain of $\sin^{-1}(2x)$ is

(c) [-1/2, 1/2]

(b) [-1, 1]

(d) [-2, 2]

20) The maximum number of equivalence relations on the set $A = \{1, 2, 3\}$ are

(a) 1

(c) 3

(b) 2

(4)3

21)If set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is

(a) 720

600

(b) 120

(d) none of these

PRINCIPAL

Avanthi Institute of Engg. & Tech

Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderaba NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@email.com

22)Events A and B are said to be mutually exclusive if:

A.P(AUB)=PA.+PB.

C.P(AUB)=0

 $B.P(A \cap B) = PA. \times PB.$

D. None of thes

23) What is the probability of getting the number 6 at least once in a regular die if it can roll it 6 times?

A. 1 - (5/6)

 $C. (5/6)^6$

B. $1 - (1/6)^6$

D. (1/6)

24)A bag contains 5 brown and 4 white socks. Ram pulls out two socks. What is the probability that both the socks are of the same colour?

A. 9/20

e. 3/20

B. 2/9

D. 4/9

25) If the variance of the data is 121, the standard deviation of the data is

401 121

(c) 12

(b) 11

(d) 21

26): Relation between mean, median and mode is given by:

(a) Mode = 2 Median - 3 Mean

(b) Mode = 2 Median + 3 Mean

(c) Mode = 3 Median – 2 Mean

(d) Mode = 3 Median + 2 Mean

27) The negation of the statement "7 is greater than 8" is

(a) 7 is equal to 8.

(e) 8 is less than 7.

(b) 7 is not greater than 8.

(d) none of these

28) Which of the following is not a statement?

(a) Smoking is injurious to health.

(c) 2 is the only even prime number.

(b) 2 + 2 = 4

(d) Come here.

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

- 29). Which of the following is a statement?
- (a) Roses are black.

(c) Be punctual.

(b) Mind your own business.

(d) Do not tell lies

- 30) The derivative of $x^2 \cos x$ is
- (a) $2x \sin x x^2 \sin x$

 $2x \cos x - x^2 \sin x$

- (d) $\cos x x^2 \sin x \cos x$
- 31) The centre of the circle $4x^2 + 4y^2 8x + 12y 25 = 0$ is

 $\frac{3}{2}$ The parametric equation of the parabola $y^2 = 4ax$ is

a.
$$x = at; y = 2at$$

b. $x = at^2; y = 2at$

c.
$$x = at^2; y^2 = at^2$$

- 33)Two lines are said to be parallel if the difference of their slope is

None of these

- 34) What is the distance of (5, 12) from the origin?
- 5 units
- 8 units

- 12 units 13 units
- 35)The largest coefficient in the expansion of $(1+x)^{10}$ is:

(10! / (5!×4!)² 10! / (5!×4!)

- 36)If n is even in the expansion of (a+b)ⁿ, the middle term is:
 - a. nth term b. (n/2)th term

- 37) The value of $(126)^{1/3}$ up to three decimal places is
 - a. 5.011
 - b. 5.012

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

38)The number of squares that can be formed on a chessboard is

 $39)If^{n}P_{5} = 60^{n-1}P_{3}$, the value of n is

40) Number of solutions of the equation $z^2 + |z|^2 = 0$ is

(d) infinitely many

(b) 2

- 41) If 1-i, is a root of the equation $x^2 + ax + b = 0$, where a, b R, then the value of a b is (a) -4
 - Set 2
- (b) 0
- 42) For any natural number n, $2^{2n} 1$ is divisible by
- (a) 2

(c) 4

(d) 1

(d)5

43) If $\tan A = 1/2$ and $\tan B = 1/3$, then the value of A + B is

(a) $\pi/6$

(b) π

44) If $\sin \theta$ and $\cos \theta$ are the roots of $ax^2 - bx + c = 0$, then the relation between a, b and c will be

(a) $a^2 + b^2 + 2ac = 0$

(b) $a^2 - b^2 + 2ac = 0$

45) If $f(x) = x^2 + 2$, $x \in \mathbb{R}$, then the range of f(x) is (a) $[2, \infty)$

(c) (2, ∞)

(b) $(-\infty, 2]$

(d) (-∞, 2) U (2, ∞)

46) What will be the domain for which the functions $f(x) = 2x^2 - 1$ and g(x) = 1 - 3x are equal?

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

		/			
(a) {-2, 1}			(c) [2, 12]		
(1/2, -2)					
		with real coefficient	ents .if p(x) =0 has o	nly purely imagina	ry roots.then
c.only rational n					
	numbers of the form a	+ib with a=/0 and	b=/0		
	ABC,D and E divide the D and BE then the rat			spectively .if P is t	he point of
a.2:1			c.4:3		
b.3:4		-	d.1:2		
49)if the incentre	and the circumstances	of the triangle for	ns by the lines x-2,		
4x+3y+7=0 and I	and S respectively, the	en IS=			
4.5			c.4×2		
b.√5	- 4000		d.2√5		
50)the equation	$x^2 - y^2 + ax + b = 0$ repres	sents a pair of lines	fpr the ordered pair	(a,b)=	
a.(2,6)			c.(4,8)		
b.(3,4)			d.(6,9)		
	PHYS	ICS			
51).SI unit of t	he magnetic field is _			1	
a. Dyne			C. Tesla	"	
b. Ohm			d. Volt		
52)Magnetic fiel	ld at any point inside t	he straight soleno	id is given as———	1	
a. $\mathbf{B} = \mathbf{\mu}_0$	n+nI		c. $\mathbf{B} = \mu_0/1$	nI	
b. $\mathbf{B} = \mathbf{\mu}_0$	6		$\mathbf{B} = \mu_0 \mathbf{n}$	I	
53)When the cha	arged particles move in	n a combined mag	metic and electric fi	eld, then the force	acting is

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

54)Whic	ch one has h	igher kinetic e	nergy? Both lig	ght and heav	y bodies have	e equal mome	nta.	
	a. Heav					lone of the op		
		t body						
	c. Both							
.55)St	ate true or f	alse: Accordin	ng to Equivalen	ce of Mass a	ad Energy, it	t states that ma	ass and energy	are
NOT	interconver	tible.						
16	,							
	True							
b.	False							
56)Find	the power i	f the work don	e is 20j per hou	ur	/			
a.	100 W				20 W			
b.	200 W				d. 500 W			
57).Fi		ntial energy sto	ored in a ball of	f mass 5 kg p	placed at a he	ight of 3 m ab	ove the	
	101 00 T				Kan			
a.	121.20 J				0. 100.3	l J		
b.	147.15 J				a 182.21	J		
58).If 2.2	kilowatt po	wer is being train	nsmitted at 44KV	Von a 20 ohm	line, then per	wer loss will be		
	0.1 watt				(c) 100 watt			
(b)	1.4 watt			1	(d) 0.05 wat	t		
59)Whic	ch one has h	igher kinetic e	energy? Both lig	ght and heav	y bodies have	e equal mome	nta.	
	Heavy bod			c.B				
Jb.	Light body				d None of	the options		
60)State		e: According to	o Equivalence	of Mass and	Energy, it sta	ates that mass	and energy are	NOT
	_							
	a. Tru	e						
	b. Fals							
61)What	t is the pow	er utilised whe	n work of 1000	J is done in	2 seconds?			
	-				c. 2	o w		
	a. 100	W			d. 5	00 W		
	b. 200							
		557						
62) Find	I the notent	al anargy store	ed in a ball of m	acc 5 kg pla	ced at a heigh	ht of 3 m abov	e the ground	
UL) THIU	me potenti	at chergy store	A III a Daii Ul II	idos o ng pia	ocu at a neigi	ii oi 5 iii abov	o the ground.	

a. 121.20 J

b. 147.15 J

d. 182.21 J

Avanthi Institute of Engineering and Technology

d) Orbital force

a) Centripetal force

b) entrifugal force e) Lorentz force

PRINCIPAL

Avanthi Institute of Engg. & Tech.

Guntihapally (V), Abdullapurmet (Mdl) R.R.Dist

Avanthi Institute of Engineering and Technology

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad)

NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

63)The energy possessed by the body by virtue of its motion is known as? a. Chemical energy b. Thermal energy c. Potential energy d. Kinetic energy 71)among a. M b. Ti a. Heavy body c. Both d. None of the options 65)State true or false: According to Equivalence of Mass and Energy, it states that mass and energy are NOT interconvertible. 72)symbo 66)What is the power utilised when work of 1000 J is done in 2 seconds? c. 20 W b. 200 W 67).Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 68 79)The sy a. K b. A. K b. D.
a. Chemical energy b. Thermal energy b. Thermal energy c. Potential energy d. Kinetic energy d. Kinetic energy b. Thermal energy b. Thermal energy d. Kinetic energy for Potential energy for Potential energy d. Kinetic energy for Potential energy for Potential energy d. Kinetic energy for Potential energy for Potential energy for Potential energy d. Kinetic energy for Potential energy for Poten
b. Thermal energy b. Thermal energy d. Kinetic energy 71) among a. M b. Ti a. Heavy body b. Light body c. Both None of the options 65) State true or false: According to Equivalence of Mass and Energy, it states that mass and energy are NOT interconvertible. True b. False 74) Dimer 66) What is the power utilised when work of 1000 J is done in 2 seconds? c. 20 W c. 21 W c. 21 J c. 227.31 J d. 182.21 J d. 182.21 J e. According to Equivalence of Mass 5 kg placed at a height of 3 m above the ground.
64)Which one has higher kinetic energy? Both light and heavy bodies have equal momenta a. Heavy body b. Light body c. Both c. Both c. None of the options 65)State true or false: According to Equivalence of Mass and Energy, it states that mass and energy are NOT interconvertible. a. True b. False 74)Dimer 66)What is the power utilised when work of 1000 J is done in 2 seconds? c. 20 W a. 100 W b. 200 W 75)AU is 67).Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 76)Give a d a. 121.20 J b. 147.15 J
a. Heavy body b. Light body c. Both light and heavy bodies have equal momenta a. Heavy body b. Light body c. Both light hone of the options 65)State true or false: According to Equivalence of Mass and Energy, it states that mass and energy are NOT interconvertible. a. True b. False 74)Dimer 66)What is the power utilised when work of 1000 J is done in 2 seconds? c. 20 W c. 20
64)Which one has higher kinetic energy? Both light and heavy bodies have equal momenta a. Heavy body b. Light body c. Both d. None of the options a. Heavy body c. Both d. None of the options a. b 65)State true or false: According to Equivalence of Mass and Energy, it states that mass and energy are NOT interconvertible. a. True b. False 74)Dimer 66)What is the power utilised when work of 1000 J is done in 2 seconds? a. 100 W b. 200 W 67).Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 76)Give a displacement of the options 72)symbol and the potential energy are NOT interconvertible. 73)Farad interconvertible. 24. 257.31 J d. 182.21 J 76)Give a displacement of the options 76)Give a displacement of the options in the options of the options in the options of the o
a. Heavy body A. Light body C. Both A. None of the options 65)State true or false: According to Equivalence of Mass and Energy, it states that mass and energy are NOT interconvertible. A. True B. False 66)What is the power utilised when work of 1000 J is done in 2 seconds? a. 100 W B. 200 W 67).Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J B. 147.15 J 72)symbo 72)symbo 72)symbo 73)Farad 73)Farad 74)Dimer 73)Farad 74)Dimer 75)AU is 76)Give a A. 121.20 J B. 147.15 J
a. Heavy body d. None of the options a. b 65)State true or false: According to Equivalence of Mass and Energy, it states that mass and energy are NOT interconvertible. a. True b. False 74)Dimer 66)What is the power utilised when work of 1000 J is done in 2 seconds? a. 100 W b. 200 W 75)AU is 67).Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 76)Give a a look of the options 227.31 J a. 121.21 J b. 147.15 J
a. Heavy body d. None of the options a. b 65)State true or false: According to Equivalence of Mass and Energy, it states that mass and energy are NOT interconvertible. a. True b. False 74)Dimer 66)What is the power utilised when work of 1000 J is done in 2 seconds? a. 100 W b. 200 W 75)AU is 67).Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 76)Give a a look of the options 227.31 J a. 121.21 J b. 147.15 J
65)State true or false: According to Equivalence of Mass and Energy, it states that mass and energy are NOT interconvertible. a. True b. False 74)Dimer 66)What is the power utilised when work of 1000 J is done in 2 seconds? a. 100 W b. 200 W 75)AU is 67).Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 76)Give a a legal of the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground.
65)State true or false: According to Equivalence of Mass and Energy, it states that mass and energy are NOT 73)Farad interconvertible. a. True b. False 74)Dimer 66)What is the power utilised when work of 1000 J is done in 2 seconds? a. 100 W b. 200 W 75)AU is 67).Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 76)Give a a ball of mass 5 kg placed at a height of 3 m above the ground.
interconvertible. a. True b. False 66) What is the power utilised when work of 1000 J is done in 2 seconds? a. 100 W b. 200 W 75) AU is 67). Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 76) Give a a ball of mass 5 kg placed at a height of 3 m above the ground.
interconvertible. a. True b. False 66) What is the power utilised when work of 1000 J is done in 2 seconds? a. 100 W b. 200 W 75) AU is 67). Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 76) Give a large stored in a ball of mass 5 kg placed at a height of 3 m above the ground.
a. True b. False 74)Dimer 66)What is the power utilised when work of 1000 J is done in 2 seconds? a. 100 W b. 200 W 75)AU is 67).Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 76)Give a a language of the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground.
b. False 74)Dimer 66)What is the power utilised when work of 1000 J is done in 2 seconds? a. 100 W b. 200 W 75)AU is 67).Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 76)Give a a language of the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground.
b. False 74)Dimer 66)What is the power utilised when work of 1000 J is done in 2 seconds? a. 100 W b. 200 W 75)AU is 67).Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 76)Give a a land of mass 5 kg placed at a height of 3 m above the ground.
66) What is the power utilised when work of 1000 J is done in 2 seconds? a. 100 W b. 200 W 67). Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 74) Dimer a. 200 W 75) AU is a. 227.31 J a. 121.20 J b. 147.15 J
66) What is the power utilised when work of 1000 J is done in 2 seconds? a. 100 W b. 200 W 75) AU is 67). Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 76) Give a a ball of mass 5 kg placed at a height of 3 m above the ground.
66) What is the power utilised when work of 1000 J is done in 2 seconds? a. 100 W b. 200 W 75) AU is 67). Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 76) Give a a ball of mass 5 kg placed at a height of 3 m above the ground.
a. 100 W b. 200 W 75)AU is b. 200 W 67).Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 75)AU is a. 227.31 J d. 182.21 J a. 327.31 J a. 121.20 J b. 147.15 J
a. 100 W b. 200 W 75)AU is 67).Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 75)AU is 75)AU is a. 227.31 J d. 182.21 J
b. 200 W 67).Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 76)Give a a
67). Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground. a. 121.20 J b. 147.15 J 76) Give a a
ground. a. 121.20 J b. 147.15 J 76)Give a a a
ground. a. 121.20 J b. 147.15 J 76)Give a a a
ground. a. 121.20 J b. 147.15 J 76)Give a a a
a. 121.20 J b. 147.15 J 76)Give a a
a. 121.20 J b. 147.15 J
b. 147.15 J
b
68) Water is flowing with a velocity of 3m/s in a pipe of diameter 4 cm. This water enters another tube of diameter
2 cm. The velocity of water in this tube is
(c) 12 m/s (c) 3 m/s (d) 1.5 m/s
(b) 6 m/s (d) 1.5 m/s
78)Unifor
69)The physical Quantity is
Mass c. Solid angle a.V
b. Time d Luminosity
DOINCIDAL
69) The physical Quantity is a. Wass b. Time c. Solid angle d. Luminosity PRINCIPAL PRINCIPAL

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad)

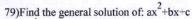
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.ayanthi@gmail.com

70)The a.		abol to represent "Amount of Substance" is _	c. Cd	
b.			d. Mo	1
71)amo	ng 1	the following is the Supplementary Unit-	- /	
a.			c. Sol	id angle
b.	Tin	ne	d. Lui	minosity
72)sym	bol	to represent "Amount of Substance" is		
	a.	K	c.	
	b.	A	1.	mol
73)Fara	d is	the unit of		•
	а	Luminosity		Permittivity
		Wavelength	d .Inertia	
	U.	Wavelength	ti ilitorius	
74)Dim	ens	ions of kinetic energy is the same as that of _		Work
	2	Acceleration	d.	Force.
	0.000	Velocity		
	U.	Velocity		
75)AU	is tl	he unit of	1	
	a.	Astronomy Unit	c.	Astrological Unit
	بطر	Astronomical unit		
	d.	Archaeological Unit		
76)Give	e an	example of motion in two dimensions	1	
21.5 % 25.55	a.	Motion along a straight line in any	c.	A flying kite
		direction	d.	Projectile motion
	b.	Bird flying		State of the State of State of the State of Stat
77) Mo	tion	n in a plane is called		
0.00		Motion in one dimension	c.	Motion in three dimensions
		Motion in two dimensions	d.	Motion in four dimensions
78)Uni	fort	n circular motion is given by the formula		
a.	V=	u+atb.v2-u2=2AS C.V-U=A d.none		

Avanthi Institute of Engineering and Technology


Avanthi Institute of Engg. & Tech
Guntihapally (V). Abdullapurmel (Mdl) R.R.Dist

Avanthi Institute of Engineering and Technology

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.nietg.ac.in email: principal.avanthi@gmail.com

A.
$$\sin^{-1} y = x + c$$

B.
$$\sin^{-1} y/2 = x + c$$

80) Hydraulic brakes work on the principal of

(a) Pascal's Law

(b) Thomson's Law

(e) Newton's Law (d) Bernouli's Theorem

CHEMISTRY

81)If liquids A and B form an ideal solution

(a) The entropy of mixing is zero

- (b) The free energy of mixing is zero
- (c) The free energy as well as the entropy of mixing
- (d) The free energy mixing is maximum

82) For an ideal gas, CV and CP are related as:

(a)
$$C_V-C_P=R$$

(c)
$$C_P - C_v = RT$$

(b)
$$C_V+C_P=R$$

83) Gases deviate from ideal behaviour because molecules-

a) are colourless

(e) attract each other

(b) are spherical

(d) have high speeds

84) Which of the following molecules have trigonal planar geometry?

(a) BF3

(c) PCl3

(b) NH₃

(d) IF

85) The elements with atomic numbers 9, 17, 35, 53, 85 are all

(a) halogens

(c) alkali earth metals

(b) noble gases

(d) transition metals

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email; principal ayanthi@gmail.com

86)Isotopes of an element have ————	
(a) Different chemical and physical proper	ties
(b) Similar chemical and physical properti	es
(c) Similar chemical but different physical	properties
(d) Similar physical but different chemical	properties
87)The radius of an atomic nucleus is of the	ne order of
(a) 10 ⁻¹⁰ cm	(c)10 ⁻¹⁵ cm
(b) 10 ⁻¹³ cm	(d) 10^{-8} cm
88)The significant figures in 0.00051 are -	
(a) 5	(c) 2
(b) 3	(d) 26
89)A pure substance which contains only of	one type of atom is called ———.
(a) An element	(c) a solid
(b) a compound	(d) a liquid93.
90)Which of the following statements con-	cerning transuranium elements is incorrect?
a) Atomic number > 92	
Example is Thorium	
c) Decay radioactively as they are unstable	
d) Elements after Uranium	
91)When copper chips are exposed to co	ncentrated nitric acid, which gas is produced?
a) Nitrogen (III) oxide	c) Nitrogen (I) oxide
b) Nitrogen (IV) oxide	d) Nitrogen (II) oxide

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad)

NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

92) What happens to the size of atoms	s in p-block elements	s when we move from	left to right in the same
period?			

- a) Size does not change
- b) Size increases then decreases
- c) Size increases
- d) Size decreases

93)In 30 minutes, a first-order reaction is 50% complete. Calculate the amount of time it took to complete 87.5 percent of the reaction.

a) 30 minutes

e) 90 minutes

b) 60 minutes

d) 120 minutes

94)Only a simple homogeneous reaction requires which of the following methods?

a) Integration method

Graphical method

b) Half-life period method

d) Ostwald's isolation method

95). What effect does temperature have on the half-life of a first-order reaction?

a) It increases

c) It remains the same

b) It decreases

d) Both increases as well as decrease

96)In 30 minutes, a first-order reaction is 50% complete. Calculate the amount of time it took to complete 87.5 percent of the reaction.

a) 30 minutes

90 minutes

b) 60 minutes

d)120 minutes

97) The heat of solution or mixing has a negative side.

a) Heat of solution

c) Heat of reaction

b) Heat of dissolution

d) Heat of mixing

PRINCIPAL PRINCIPAL

Avanthi Institute of Engg. & Tech.
Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

98)When two perfect solutions with volume V each are combined, What is the volume of the solution as a result?

a) V

c) Greater than 2V

by SV

d) Less than 2V

99)The electrons of Rutherford's model would be expected to lose energy because

- a. They jump on the nucleus
- b. They move randomly
- e. Radiate electromagnetic waves
- d. Escape from the atom

100)Electrons in the atom are held to the nucleus by

a. Nuclear Force

be Coulomb's Force

c. Gravitational Force

d. Van Der Waal's Force

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

2022-23 MODEL FREESHIP QUESTION PAPER **QUESTION PAPER NAME: ENGINEERING**

Duration:180 Min

NAME OF THE STUDENT: T. MOLLECK FREESHIP NO AVIA 2022 197

- 1)Solution of differential equation x.dy-y.dx = Q represents:
- A. a rectangular hyperbola
- B. parabola whose vertex is at the origin
- e. straight line passing through the origin
- D. a circle whose centre is at the origin
- 2) What is the differential equation of the family of circles touching the y-axis at the origin?

$$A. 2xyy' + x^2 = y^2$$

B.
$$2xyy'' + x' = y'$$

C.
$$2xyy' - x^2 = y$$

D.
$$xyy' + x^2 = y$$

- 3)The number of arbitrary constants in the particular solution of a differential equation of third order is:
 - a. 3
 - b. 2

- 4) Find the degree of the differential equation: (1+000)3-(000)2
 - A. 0
 - B. 1

D. 3

- 5) If $\int 2^{x} dx = f(x) + C$, then f(x) is

d. 2x+1

- $60\int^2 (x^2 + 3) dx$ equals a. 24/3
 - b. 25/3

26/3 d. None of the above...

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

7) The area of a triangle with vertices (-3, 0), (3, 0) and (0, k) is 9 sq. units. The value of k will be

(a) g

(b) 3

8) If $x \sin(a+y) = \sin y$, then $\frac{dy}{dx}$ is equal to

a. [sin²(a+y)]/sin a b. sin a /[sin²(a+y)]

- c. [sin(a+y)]/sin a
- d. $\sin a / [\sin(a+y)]$

9) The function $f(x) = [\ln(1+ax) - \ln(1-bx)]/x$, not defined at x=0. The value should be assigned to f at x=0, so that it is continuous at x = 0, is

c. b-a $d. \ln a + \ln b$

10) If $y = ax^2 + b$, then dy/dx at x = 2 is equal to

- a. 2a
- b. 3a

- d. None of these

11) The value of c in Rolle's theorem for the function, $f(x) = \sin 2x$ in $[0, \pi/2]$ is $a. \pi/4$

b. π/6

12) If $x = t^2$, $y=t^3$, then $d^2y/dx^2 =$

a. 3/2 b. 3/4t

c. 3/2t d. 3t/2

13). If A is a square matrix of order 3 and |A| = 5, then the value of |2A'| is

(a) -10

(b) 10

(c) 4

(d) - 8

Avanthi Institute of Engg. & Tech Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

15)-8If A and B are two matrices of the order 3	\times m and 3×1	n, respectively.	and m = n,	then the order o
matrix $(5A - 2B)$ is				

(a) $m \times 3$

(b) 3×3

16) The value of the expression $\sin \left[\cot^{-1} \left(\cos \left(\tan^{-1} 1\right)\right)\right]$ is

(a) 0

(b) 1

(d) V(2/3)

17)Which of the following is the principal value branch of cos⁻¹x?

(a) $[-\pi/2, \pi/2]$

(b) $(0, \pi)$

(d) $(0, \pi) - {\pi/2}$

18) If $\sin^{-1} x + \sin^{-1} y = \pi/2$, then value of $\cos^{-1} x + \cos^{-1} y$ is

(a) $\pi/2$

(b) n

Therefore, $\cos^{-1} x + \cos^{-1} v = \pi/2$.

19) The domain of $\sin^{-1}(2x)$ is

(a) [0, 1]

(b) [-1, 1]

(d) [-2, 2]

20) The maximum number of equivalence relations on the set $A = \{1, 2, 3\}$ are

(a) 1

(b) 2

21) If set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is

Avanthi Institute of Engineering and Technology

(a) 720

(e) 0

(b) 120

(d) none of these

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

22)Events A and B are said to be mutually exclusive if:

A.P(AUB)=PA.+PB.

€.P(AUB)=0

 $B.P(A \cap B) = PA. \times PB.$

D. None of these

23) What is the probability of getting the number 6 at least once in a regular die if it can roll it 6 times?

A. $1 - (5/6)^6$

B. $1 - (1/6)^6$

24) A bag contains 5 brown and 4 white socks. Ram pulls out two socks. What is the probability that both the socks are of the same colour?

A. 9/20

B. 2/9

D. 4/9

25) If the variance of the data is 121, the standard deviation of the data is:

(a) 121

(b) 11

26): Relation between mean, median and mode is given by:

(a) Mode = 2 Median - 3 Mean

(b) Mode = 2 Median + 3 Mean

Mode = 3 Median - 2 Mean

(d) Mode = 3 Median + 2 Mean

27) The negation of the statement "7 is greater than 8" is

(a) 7 is equal to 8.

(c) 8 is less than 7.

(b) 7 is not greater than 8.

(d) none of these

28) Which of the following is not a statement?

(a) Smoking is injurious to health.

(c) 2 is the only even prime number.

(b) 2 + 2 = 4

(d) Come here.

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal_avanthi@gmail.com

(a) Roses are black.

(c) Be punctual.

(b) Mind your own business.

(d) Do not tell lies.

30) The derivative of x² cos x is

(a) $2x \sin x - x^2 \sin x$

(c) $2x \sin x - x^2 \cos x$

(b) $2x \cos x - x^2 \sin x$

(d) cosx-x² sin x cos x

31) The centre of the circle $4x^2 + 4y^2 - 8x + 12y - 25 = 0$ is

c. (-4, 6)

d. (4, -6)

32) The parametric equation of the parabola $y^2 = 4ax$ is

a.
$$x = at$$
; $y = 2at$
b. $x = at^2$; $y = 2at$

c.
$$x = at^2$$
; $y^2 = at^3$

33)Two lines are said to be parallel if the difference of their slope is

d. None of these

34) What is the distance of (5, 12) from the origin?

12 units 13 units

8 units

35) The largest coefficient in the expansion of $(1+x)^{10}$ is:

36)If n is even in the expansion of (a+b)ⁿ, the middle term is:

c. 10! / (5!×4!) d. 10! / (5!×4!)

37) The value of (126) 1/3 up to three decimal places is

a. 5.011 b. 5.012

5.013 d. 5.014

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

38)The number of squares that can be formed on a chessboard is

a. 64b. 160

d. 224

39)If $^{n}P_{5} = 60^{n-1}P_{3}$, the value of n is

C.

40) Number of solutions of the equation $z^2 + |z|^2 = 0$ is

(a) 1

(b) 2

(d) infinitely many

41) If 1 - i, is a root of the equation $x^2 + ax + b = 0$, where a, b R, then the value of a - b is

(a) -4

(0)2

(b) 0

(d) 1

42) For any natural number n, $2^{2n} - 1$ is divisible by

(a) 2

(c) 4 (d) 5

(b) 3

43) If $\tan A = 1/2$ and $\tan B = 1/3$, then the value of A + B is

(a) n/6

(b) n

44)If $\sin \theta$ and $\cos \theta$ are the roots of $ax^2 - bx + c = 0$, then the relation between a, b and c will be

(a)
$$a^2 + b^2 + 2ac = 0$$

(c) $a^2 + c^2 + 2ab = 0$

(d) $a^2 - b^2 - 2ac = 0$

45) If $f(x) = x^2 + 2$, $x \in \mathbb{R}$, then the range of f(x) is

(a) [2, ∞)

(e) (2, ∞)

(b) $(-\infty, 2]$

(d) $(-\infty, 2)$ U $(2, \infty)$

46) What will be the domain for which the functions $f(x) = 2x^2 - 1$ and g(x) = 1 - 3x are equal?

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad)

NAAC "B++" Accredited Institute

 $Gunthapally\ (V),\ Abdullapurmet(M),\ RR\ Dist,\ Near\ Ramoji\ Film\ City,\ Hyderabad\ -501512.$

www.aietg.ac.in email: principal.avanthi@gmail.com

(a) {-2, 1}	(c) [2, 12]
Q6) {1/2, -2}	
	eal coefficients .if $p(x) = 0$ has only purely imaginary roots.then
the zeros of the polynomial $p(p(x))$ are	
a.only real numbers	
b.only purely imaginary numbers	
c.only rational numbers	
d.only complex numbers of the form a+ib w	ith a=/0 and b=/0
48)In a triangle ABC,D and E divide the side intersection of AD and BE then the ratio in v	es BC and CA in the ratio 2:1 respectively .if P is the point of which P divides AD is
a.2:1	c 4×2
b.3:4	41.2
0.0.17	7
49)if the incentre and the circumstances of the	triangle forms by the lines x=2,
4x+3y+7=0 and I and S respectively ,then IS=	
a.5	c.4y2
b.√5	d2√5
50)the equation $x^2 - y^2 + ax + b = 0$ represents a	pair of lines fpr the ordered pair (a,b)=
a.(2,6)	c.(4.8)
b.(3,4)	d.(6,9)
PHYSICS	
51).SI unit of the magnetic field is	
a. Dyne	Tesla
b. Ohm	d. Volt
b. Olim	d. Voit
52) Magnetic field at any point inside the stra	night solenoid is given as
a. $\mathbf{B} = \mu_0 + n\mathbf{I}$	c. $\mathbf{B} = \mathbf{\mu}_0/\mathrm{nI}$
b. $\mathbf{B} = \mu_0 + \mathbf{n} + \mathbf{I}$	$\mathbf{a} \cdot \mathbf{B} = \mu_0 \mathbf{n} \mathbf{I}$
53) When the charged particles move in a co	mbined magnetic and electric field, then the force acting is
known as	
Continual form	D. Oakstal Samo
a) Centripetal force	d) Orbital force
b) entrifugal force	- DR

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad)

NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

54) Which one has higher kinetic energy? Both lig	ht and heavy bodies have equal momenta
a. Heavy body	d. None of the options
b. Light body	
c. Both	
.55)State true or false: According to Equivalence NOT interconvertible.	ce of Mass and Energy, it states that mass and energy are
a. True	
b. False	
o. Taise	4
56)Find the power if the work done is 20j per hou	
a. 100 W	20 W
b. 200 W	d. 500 W
57). Find the potential energy stored in a ball of ground.	mass 5 kg placed at a height of 3 m above the
a. 121.20 J	c. 227.31 J
b. 147.15 J	d. 182.21 J
58).If 2.2 kilowatt power is being transmitted at 44KV	on a 20 ohm line, then power loss will be
(a) 0.1 watt (b) 1.4 watt	(c) 100 watt
(b) 1.4 wait	(a) 0.05 watt
59) Which one has higher kinetic energy? Both ligh	ht and heavy bodies have equal momenta.
a. Heavy body	c.Both
b. Light body	d None of the options
60)State true or false: According to Equivalence o	f Mass and Energy, it states that mass and energy are NOT
interconvertible.	
a True	
b. False	
61)What is the power utilised when work of 1000	J is done in 2 seconds?
	c. 20 W
a. 100 W	d. 500 W
b. 200 W	
62) Find the potential energy stored in a hall of ma	ass 5-kg placed at a height of 3 m above the ground.
a. ~ 121.20 J	c. 227.31 J
b- 147.15 J	d. 182.21 J
a 2 Toch	

Avanthi Institute of Engineering and Technology

A Lorentz force

Avanthi Institute of Engg. & Tech.
Guntihapally (V), Abdullapurmet (Mdl) R.R.Dist

Avanthi Institute of Engineering and Technology

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad)

NAAC "B++" Accredited Institute

 $Gunthapally\ (V),\ Abdullapurmet(M),\ RR\ Dist,\ Near\ Ramoji\ Film\ City,\ Hyderabad\ -501512.$

www.aietg.ac.in email: principal.avanthi@gmail.com

63)The energy possessed by the body by virtue of	its motion is known as?
a. Chemical energy	c. Potential energy
b. Thermal energy	Kinetic energy
o. Thermal chergy	January S.
	1. 11 1. 1. 1. 1
64) Which one has higher kinetic energy? Both lig	nt and heavy bodies have equal momenta
b. Light body	c. Both
b. Light body	d. None of the options
	a a constant of the constant o
65)State true or false: According to Equivalence of	of Mass and Energy, it states that mass and energy are NOT
interconvertible.	
2	
a. True	
b. False	
o. Table	
66)What is the newer utilized when work of 1000	Lie done in 2 seconds?
66) What is the power utilised when work of 1000	J is done in 2 seconds:
	C. 20 W
a. 100 W	A. 300 W
b. 200 W	120
67). Find the potential energy stored in a ball of m	ass 5 kg placed at a height of 3 m above the
ground.	
	c. 227.31 J
a. 121.20 J	d. 182.21 J
X. 147.15 J	
70. 141.155	
68) Water is flowing with a velocity of 3m/s in a pipe	of diameter 4 cm. This water enters another tube of diameter
2 cm. The velocity of water in this tube is	of diameter 4 cm. This water enters around the or
(a) 12 m/s	(a) 3 m/s
(a) 12 m/s (b) 6 m/s	(c) 3 m/s (d) 1.5 m/s
(0) 6 111/8) 1.5 m/s
CONTINUE - In all all Overations in	
69)The physical Quantity is	a Calidanala
a. Mass	c. Solid angle
b. Time	d. Luminosity

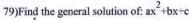
AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad)

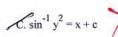
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.ayanthi@gmail.com


	ZO)ZI	1.14	Substance? is	
		mbol to represent "Amount of		
	a. K		c. Cd	ž.
	b. A		A. Mo	l
	71)amona	the following is the Supplement	ntary Unit-	
	a. M		mary one	id angle
	b. Ti			ninosity
	0. 11	ine	u. Lui	imiosity
	72)symbo	ol to represent "Amount of Subs	stance" is	
		Z		C.I.
	1	K		Cd
	b.	. A /	d.	mol
	73)Farad	is the unit of		
		au man wil		P
		. Luminosity	Je.	Permittivity
	b.	. Wavelength	d'.Inertia	
	74)Dimen	asions of kinetic energy is the sa	ame as that of	
	,		ø.	Work
	a.	. Acceleration	d.	Force.
	b.	Velocity		
	75)AU is	the unit of		
		A		Astrological Unit
	a.	. Astronomy Unit	C.	Astrological Unit
	عر	Astronomical unit		
	d.	. Archaeological Unit		
	76)Give a	an example of motion in two dir	mensions	
		. Motion along a straight line	in any c.	A flying kite
	4.	direction	d.	Projectile motion
	b	. Bird flying		110jeetiie motion
	0.	. Bud flying		
			1	
	77) Motio	on in a plane is called		
	//) Motio	. Motion in one dimension	-	Motion in three dimensions
		Motion in two dimensions		Motion in four dimensions
	مر	wiodon in two dimensions	u.	Motion in tour difficustons
		rm circular motion is given by t	the formula	
-	a V	=u+atb.v2-u2-2AS C.V-U	A d.none	
	a. v			

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute


Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

A.
$$\sin^{-1} y = x + c$$

B.
$$\sin^{-1} y/2 = x + c$$

D. None of the above

80) Hydraulic brakes work on the principal of

- (a) Pascal's Law
- (b) Thomson's Law

- (c) Newton's Law (d) Bernouli's Theorem

CHEMISTRY

- 81)If liquids A and B form an ideal solution
- (a) The entropy of mixing is zero
- (b) The free energy of mixing is zero
- (c) The free energy as well as the entropy of mixing
- (d) The free energy mixing is maximum
- 82) For an ideal gas, CV and CP are related as:

(a)
$$C_V-C_P=R$$

(c)
$$C_P - C_v = RT$$

(d)
$$C_P - C_v = I$$

83) Gases deviate from ideal behaviour because molecules

a) are colourless

(b) are spherical

- di have high speeds
- 84) Which of the following molecules have trigonal planar geometry?
- (a) BF3

(b) NH₃

85) The elements with atomic numbers 9, 17, 35, 53, 85 are all

(a) halogens

(c) alkali earth metals

(b) noble gases

(d) transition metals

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

86)Isotopes of an element have

- (a) Different chemical and physical properties
- (b) Similar chemical and physical properties
- (c) Similar chemical but different physical properties
- d) Similar physical but different chemical properties

87) The radius of an atomic nucleus is of the order of-

(a) 10⁻¹⁰ cm

(c)10⁻¹⁵ cm

(d) 10⁻⁸ cm

88) The significant figures in 0.00051 are -

(a) 5

Set 2

(b) 3

(d) 26

89)A pure substance which contains only one type of atom is called

(a) An element

(c) a solid

(b) a compound

(d) a liquid93.

90) Which of the following statements concerning transuranium elements is incorrect?

- a) Atomic number > 92
- b) Example is Thorium
- c) Decay radioactively as they are unstable
- d) Elements after Uranium

91) When copper chips are exposed to concentrated nitric acid, which gas is produced?

a) Nitrogen (III) oxide

c) Nitrogen (I) oxide

b) Nitrogen (IV) oxide

Nitrogen (II) oxide

PRINCIPAL

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

92) What happens to the size of atoms in p-t period?	block elements when we move from left to right in the sai
Size does not change	
b) Size increases then decreases	
c) Size increases	
d) Size decreases	
93)In 30 minutes, a first-order reaction is 50 complete 87.5 percent of the reaction.	0% complete. Calculate the amount of time it took to
a) 30 minutes	c) 90 minutes
b) 60 minutes	d) 120 minutes
94)Only a simple homogeneous reaction reaction	quires which of the following methods?
a) Integration method	c) Graphical method
b) Half-life period method	d) Ostwald's isolation method
95). What effect does temperature have on t	he half-life of a first-order reaction?
a NIt increases	c) It remains the same
b) It decreases	d) Both increases as well as decrease
96)In 30 minutes, a first-order reaction is 50 complete 87.5 percent of the reaction.	0% complete. Calculate the amount of time it took to
a) 30 minutes	2) 90 minutes
b) 60 minutes	d)120 minutes
97)The heat of solution or mixing has a neg	ative side.
a) Heat of solution	Heat of reaction
heat of dissolution	d) Heat of mixing

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal ayanthi@gmail.com

98) When two perfect solutions with volume V each are combined, What is the volume of the solution as a result?

a) V

c) Greater than 2V

b) 2V

d) Less than 2V

99) The electrons of Rutherford's model would be expected to lose energy because

a. They jump on the nucleus

b. They move randomly

c. Radiate electromagnetic waves

d. Escape from the atom

100)Electrons in the atom are held to the nucleus by

a. Nuclear Force

b. Coulomb's Force

c. Gravitational Force

d. Van Der Waal's Force

PRINCIPAL

Avanthi Institute of Engg. & Tech

Guntihapally (V). Abdullapunnet (Mdl) R.R.Dist

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Eyderabad)

NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad)

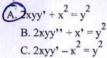
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.ayanthi@gmail.com

Date: 12-8-2022

2022-23 MODEL FREESHIP QUESTION PAPER QUESTION PAPER NAME: ENGINEERING


Total Marks: 100 Duration: 180 Min

NAME OF THE STUDENT: A. Kyan Hitum Theeship No AUH2099 113

- 1)Solution of differential equation x.dy-y.dx = Q represents:
- A. a rectangular hyperbola
- B. parabola whose vertex is at the origin
- Straight line passing through the origin
- D. a circle whose centre is at the origin

2) What is the differential equation of the family of circles touching the y-axis at the origin?

D. $xyy' + x^2 = y^2$

- 3)The number of arbitrary constants in the particular solution of a differential equation of third order is:
 - a. 3
 - b. 2

- @
- d. 10
- 4)Find the degree of the differential equation: (1+000)3=(000)2

X

D. 3

5) If $\int 2^x dx = f(x) + C$, then f(x) is

a. 2^x
b. 2^x log_e2
c. 2^x / log_e2

d. $2^{x+1}/x+1$

 $(x^2 + 3)$ dx equals a. 24/3

a. 24/3b. 25/3

c. 26/3 d. None of the above.. - Ca) 8 (a) 8

7) The area of a triangle with vertices (-3, 0), (3, 0) and (0, k) is 9 sq. units. The value of k will be

(a) 9 (b) 3 (d) 6

8) If $x \sin(a+y) = \sin y$, then dy/dx is equal to

(a.) [sin²(a+y)]/sin a b. sin a /[sin²(a+y)] c. [sin(a+y)]/sin ad. sin a /[sin(a+y)]

9) The function $f(x) = [\ln(1+ax) - \ln(1-bx)]/x$, not defined at x=0. The value should be assigned to f at x=0, so

a.a+b

that it is continuous at x = 0, is

d. ma+ ln b

10) If $y = ax^2 + b$, then dy/dx at x = 2 is equal to

a. 2a b. 3a

c. 4a

11) The value of c in Rolle's theorem for the function, $f(x) = \sin 2x$ in $[0, \pi/2]$ is a. $\pi/4$

b. $\pi/6$

 $\frac{c}{d}$. $\pi/3$

12) If $x = t^2$, $y = t^3$, then $d^2y/dx^2 = t^2$

a. 3/2 b. 3/4t c. 3/2td. 3t/2

13). If A is a square matrix of order 3 and |A| = 5, then the value of |2A'| is

(a) -10 (b) 10 (c) -40

(d) 40

(c) 4

(d) -8

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JMTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

15)-8If A and B are two matrices of the order 3 × m a	nd 3 × n, res	pectively, a	and m = n,	then the order of
matrix (5A – 2B) is				

(a) $m \times 3$

(b) 3×3

16) The value of the expression $\sin \left[\cot^{-1} \left(\cos \left(\tan^{-1} 1\right)\right)\right]$ is

(a) 0

(c) 1/\3

(b) 1

17) Which of the following is the principal value branch of cos⁻¹x?

(a) $[-\pi/2, \pi/2]$

(b) $(0, \pi)$

(d) $(0, \pi) - {\pi/2}$

18) If $\sin^{-1} x + \sin^{-1} y = \pi/2$, then value of $\cos^{-1} x + \cos^{-1} y$ is

(a) $\pi/2$

(b) n

(d) $2\pi/3$

Therefore, $\cos^{-1} x + \cos^{-1} y = \pi/2$.

19) The domain of $\sin^{-1}(2x)$ is

(a)[0,1]

(b) [-1, 1]

20) The maximum number of equivalence relations on the set $A = \{1, 2, 3\}$ are

(a) 1

(b) 2

21) If set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is

(a) 720

(b) 120

(d) none of these

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.ayanthi@gmail.com

22) Events A and B are said to be mutually exclusive if:

.A.P(AUB)=PA.+PB.

 $B.P(A \cap B) = PA. \times PB.$

D. None of these

23) What is the probability of getting the number 6 at least once in a regular die if it can roll it 6 times?

A. $1 - (5/6)^6$

B. $1 - (1/6)^6$

D. (1/6)6

24)A bag contains 5 brown and 4 white socks. Ram pulls out two socks. What is the probability that both the socks are of the same colour?

A. 9/20

B.2/9

C. 3/20

25) If the variance of the data is 121, the standard deviation of the data is:

(a) 121

(c) 12

(b) 11

26): Relation between mean, median and mode is given by:

(a) Mode = 2 Median - 3 Mean

(b) Mode = 2 Median + 3 Mean

(c) Mode = 3 Median - 2 Mean

(d) Mode = 3 Median + 2 Mean

27) The negation of the statement "7 is greater than 8" is

(1) s equal to 8.

(c) 8 is less than 7.

(b) 7 is not greater than 8.

28) Which of the following is not a statement?

(a) Smoking is injurious to health.

(c) 2 is the only even prime number.

(b) 2 + 2 = 4

(d) Come here.

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapumnet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

- 29). Which of the following is a statement?
- (a) Roses are black.

(c) Be punctual.

(b) Mind your own business.

- 30) The derivative of $x^2 \cos x$ is
- (a) $2x \sin x x^2 \sin x$

6) $2x \cos x - x^2 \sin x$

- (d) cosx- x² sin x cos x
- 31) The centre of the circle $4x^2 + 4y^2 8x + 12y 25 = 0$ is

- d. (4, -6)
- 32) The parametric equation of the parabola $y^2 = 4ax$ is

- a. x = at; y = 2atb. $x = at^2; y = 2at$
- 33)Two lines are said to be parallel if the difference of their slope is

- d. None of these
- 34) What is the distance of (5, 12) from the origin?
- 5 units
- 8 units

- 12 units
- 35)The largest coefficient in the expansion of (1+x)¹⁰ is
 - a. 10! / (5!)²
 b. 10! / 5!

- 36) If n is even in the expansion of (a+b)ⁿ, the middle term is:
 - a. nth term b. (n/2)th term

- 37) The value of $(126)^{1/3}$ up to three decimal places is
 - a. 5.011
 - b. 5.012

PRINCIPAL

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

- 38)The number of squares that can be formed on a chessboard is

- 39)If $^{n}P_{5} = 60^{n-1}P_{3}$, the value of n is
- (35.) 10

- 40) Number of solutions of the equation $z^2 + |z|^2 = 0$ is
- (a) 1
- (b) 2

- (d) infinitely many
- 41) If 1 -i, is a root of the equation $x^2 + ax + b = 0$, where a, b R, then the value of a b is
- (a) -4

(b) 0

- 42) For any natural number n, 2²ⁿ 1 is divisible by
- (a) 2

(c) 4

(6b) 3

- (d) 5
- 43) If $\tan A = 1/2$ and $\tan B = 1/3$, then the value of A + B is
- (a) $\pi/6$ (b) n

- 44) If $\sin \theta$ and $\cos \theta$ are the roots of $ax^2 bx + c = 0$, then the relation between a, b and c will be
- (a) $a^2 + b^2 + 2ac = 0$

(c) $a^2 + c^2 + 2ab = 0$

(b) $a^2 - b^2 + 2ac = 0$

- (d) $a^2 b^2 2ac = 0$
- 45)If $f(x) = x^2 + 2$, $x \in \mathbb{R}$, then the range of f(x) is (a) [2, ∞)

- (c) (2, ∞) (d) (-∞, 2) U (2, ∞)

- 46) What will be the domain for which the functions $f(x) = 2x^2 1$ and g(x) = 1 3x are equal?

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal avanthi@gmail.com

47) Let p(x) be a quadratic polynomial with real coefficients if p(x) = 0 has only purely imaginary roots, then the zeros of the polynomial p(p(x)) are

a.only real numbers

6. only purely imaginary numbers

c.only rational numbers

d.only complex numbers of the form a+ib with a=/0 and b=/0

48) In a triangle ABC D and E divide the sides BC and CA in the ratio 2:1 respectively .if P is the point of intersection of AD and BE then the ratio in which P divides AD is...

a.2:1 b.3:4

49) if the incentre and the circumstances of the triangle forms by the lines x=2,

4x+3y+7=0 and I and S respectively then IS=

(a.3) b. V5

50) the equation $x^2 - y^2 + ax + b = 0$ represents a pair of lines for the ordered pair (a,b)=

PHYSICS

51).SI unit of the magnetic field is

- a. Dyne
- b. Ohm

52) Magnetic field at any point inside the straight solenoid is given as

- a. $B = \mu_0 + nI$
- b. $B = \mu_0 + n + I$

53) When the charged particles move in a combined magnetic and electric field, then the force acting is known as

Avanthi Institute of Engineering and Technology

Centripetal force

- b) entrifugal force c) Lorentz force

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

54) Which one has higher kinetic energy? Both light and heavy bodies have equal momenta.

a. Heavy body 6. Light body c. Both

d. None of the options

.55)State true or false: According to Equivalence of Mass and Energy, it states that mass and energy are NOT interconvertible.

True

56) Find the power if the work done is 20j per hour

- a. 100 W
- b. 200 W

c. 20 W d. 500 W

57). Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground.

(a) 121.20 J b. 147.15 J

c. 227.31 J d. 182.21 J

58). If 2.2 kilowatt power is being transmitted at 44KV on a 20 ohm line, then power loss will be

- (a) 0.1 watt
- (b) 1.4 watt

(c) 100 watt (d) 0,05 watt

59) Which one has higher kinetic energy? Both light and heavy bodies have equal momenta.

a. Heavy body (b.) Light body

d None of the options

60)State true or false: According to Equivalence of Mass and Energy, it states that mass and energy are NOT interconvertible.

a. True B.) False

61) What is the power utilised when work of 1000 J is done in 2 seconds?

- a. 100 W
- b. 200 W

62) Find the potential energy stored in a ball of mass 5 kg placed at a height of 3 m above the ground.

(a.) 121.20 J

c. 227.31 J d. 182,21 J

PRINCIPAL

Avanthi Institute of Engg. & Tech

Avanthi Institute of Engineering and Technology

Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapumnet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

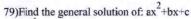
www.aietg.ac.in email: principal.avanthi@gmail.com

63) The energy possessed by the body by virtue of its n	
a. Chemical energy	c. Potential energy
b. Thermal energy	d. Kinetic energy
64) Which one has higher kinetic energy? Both light an	d heavy bodies have equal momenta
	Both
a. Heawy body b. Light body	d. None of the options
b. Light body	d. None of the options
65)State true or false: According to Equivalence of Ma interconvertible.	ass and Energy, it states that mass and energy are NOT
Torr	A
a True	
(U.) raise	
66)What is the power utilised when work of 1000 J is	done in 2 seconds?
100 W	c. 20 W
a. 100 W	(a.)500 W
b. 200 W	
67). Find the potential energy stored in a ball of mass 5	kg placed at a height of 3 m above the
ground.	
	C. 227.31 J d. 182.21 J
a. 121.20 J	d. 182.21 J
b. 147.15 J	
68) Water is flowing with a velocity of 3m/s in a pipe of dia	ameter 4 cm. This water enters another tube of diameter
2 cm. The velocity of water in this tube is	/
(a) 12 m/s	(c) 3 m/s
(b) 6 m/s	(T) 5 m/s
69)The physical Quantity is	1 1.0
a. Mass	c. Solid angle
b. Time	d. Luminosity
	PRINC

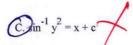
AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

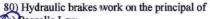
Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com


70) The symbol to represent "Amount of Substance" i	S
a. K	(c) Cd
b. A	d. Mol
71)among the following is the Supplementary Unit-	-
a. Mass	c. Solid angle
b. Time	d. Luminosity
72)symbol to represent "Amount of Substance" is	
(₹)K	c. Cd
6. A	d. mol
73)Farad is the unit of	
a. Luminosity	C. Permittivity
b. Wavelength	d .Inertia
74)Dimensions of kinetic energy is the same as that of	f
	c. Work
(a. Acceleration	d. Force.
b. Velocity	
75)AU is the unit of	•
a. Astronomy Unit	c. Astrological Unit
6.) Astronomical unit	
d. Archaeological Unit	
76)Give an example of motion in two dimensions	
 a. Motion along a straight line in any 	A flying kite
direction	d. Projectile motion
b. Bird flying	
77) Motion in a plane is called	c. Motion in three dimensions
b. Motion in two dimensions	d. Motion in four dimensions
	d. Motion in four difficustons
78)Uniform circular motion is given by the formula _	
$a.V=u+a(b.v^2)u^2=2AS$ C.V-U=A d.none	
0 T-ab	

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute


Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

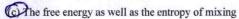
www.aietg.ac.in email: principal.avanthi@gmail.com

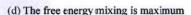


A.
$$\sin^{-1} y = x + c$$

B.
$$\sin^{-1} v/2 = x + c$$

D. None of the above




(a) Pascal's Law (b) Thomson's Law

- (c) Newton's Law
- (d) Bernouli's Theorem

CHEMISTRY

- 81)If liquids A and B form an ideal solution
- (a) The entropy of mixing is zero
- (b) The free energy of mixing is zero

82) For an ideal gas, CV and CP are related as:

(b) $C_V + C_P = R$

(d)
$$C_P - C_v = R$$

83)Gases deviate from ideal behaviour because molecules-

a) are colourless

(c) attract each other

(b) are spherical

(d) have high speeds

84) Which of the following molecules have trigonal planar geometry?

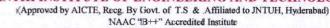
(c) PCl₃

(b) NH₃

(d) IF

85) The elements with atomic numbers 9, 17, 35, 53, 85 are all

(a) halogens


(c) alkali earth meta

(b) poble gases

(d) transition metals

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

1
\times
es
es
f
(c) 10 ⁻¹⁵ cm
(d) 10 ⁻⁸ cm
- /
(B)
(d) 26
of atom is called ———.
(c) a sollid
(d) a liquid93.
ansuranium elements is incorrect?

c) Decay radioactively as they are unstable

d) Elements after Uranium

b) Example is Thorium

91) When copper chips are exposed to concentrated nitric acid, which gas is produced?

- a) Nitrogen (III) oxide
- b) Nitrogen (IV) oxide

d) Nitrogen (II) oxide

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal avanthi@gmail.com

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S & Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal avanthi@gmail.com

92) What happens to the size of atoms in p-block elements when we move from left to right in the same	
period?	98)When two perfect solutions with volume

- a) Size does not change
- b) Size increases then decreases
- c) Size increases

93)In 30 minutes, a first-order reaction is 50% complete. Calculate the amount of time it took to complete 87.5 percent of the reaction.

a) 30 minutes

b) 60 minutes

d) 20 minutes

94)Only a simple homogeneous reaction requires which of the following methods?

(a) Integration method

c) Graphical method

b) Half-life period method

- d) Ostwald's isolation method
- 95). What effect does temperature have on the half-life of a first-order reaction?
- a) It increases

c) It emains the same

b) It decreases

d) Both increases as well as decrease

96)In 30 minutes, a first-order reaction is 50% complete. Calculate the amount of time it took to complete 87.5 percent of the reaction.

a) 30 minutes

c) 90 minutes

b) 60 minutes

d)130 minutes

97) The heat of solution or mixing has a negative side.

a) Heat of solution

c) Heat of reaction

b) Heat of dissolution

d) Heat of mixing

e V each are combined, What is the volume of the solution as a result?

a) V

c) Greater than 2V

d) Less than 2V

99)The electrons of Rutherford's model would be expected to lose energy because

- a. They jump on the nucleus
- b. They move randomly
- Radiate electromagnetic waves

Escape from the atom

100)Electrons in the atom are held to the nucleus by

- a. Nuclear Force
- Coulomb's Force
- Gravitational Force

Van Der Waal's Force

Avanthi Institute of Engg. & Tech

Guntihapally (V), Abdullapurmet (Mdl) R.R.Dist

TO DUCATIONAL SECTION AND SERVICE AND SERV

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

AVANTHI FREESHIP STUDENTS ACADEMIC YEAR 2022-2023:

The following is the list of students 205 are selected from Avanthi Freeship Policy test conducted on 21-09-2022, 24-09-2022 and 12-10-2022. Based on the merit of the test results the fee concessions is given to the below students.

Freeship Test Marks:

S.No	Freeship No	Student Name	Marks
1	AVIH2022001	BAILADUGU SAI RAMA KRISHNA	82
2	AVIH2022002	BODDUPALLI HEMANTH KUMAR	85
3	AVIH2022003	BOPPU PAVAN	83
4	AVIH2022004	CHAVA VAMSHI	83
5	AVIH2022005	CHETTI HARISH GOUD	82
6	AVIH2022006	CHINNOLLA VINEEL	82
7	AVIH2022007	CHITTETI KEERTHI BHARGAVI	52
8	AVIH2022008	GADDAM SAHARIKA	84
9	AVIH2022009	GOPISHETTI NIKITHA	82
10	AVIH2022010	GORLA PRANAY	82
11	AVIH2022011	GURRAM PAVANI	84
12	AVIH2022012	KANDATI VINAY REDDY	82
13	AVIH2022013	MADASTU KEERTHI	82
14	AVIH2022014	MAMILLA ARUN TEJA	81
15	AVIH2022015	MD KHALEEL	81
16	AVIH2022016	MIRAMPALLY NIKESH	84
17	AVIH2022017	MIRYALA SRILEKHA	85
18	AVIH2022018	MOHD ALTAF HUSSAIN	72
19	AVIH2022019	ORPULA SANTHOSH	81
20	AVIH2022020	PALLA VENKATA NARAYANA REDDY	73
21	AVIH2022021	PASULA KARTHIK	82
22	AVIH2022022	PATHIPAKALA ROHITH	85
23	AVIH2022023	PODHILA THIRUPATHI RAO	85
24	AVIH2022024	PONNAM AKSHAY	83
25	AVIH2022025	RANGU SHIVA	81
26	AVIH2022026	VEERAMUSTI BHARATH	82
27	AVIH2022027	VELMA SRIJA	72
28	AVIH2022028	RUPANI DINESH	82
29	AVIH2022029	BALUSU HEMANTH SAI	39
30	AVIH2022030	AADI SAI NITHYA	46
31	AVIH2022031	AVULA RAKESH	46

PRINCIPAL

Avanthi Institute of Engg. & Tech
Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

32	AVIH2022032	BODA TEJA	39
33	AVIH2022033	GORLE TEJASRI	38
34	AVIH2022034	GOURAV RAJPUROHIT	46
35	AVIH2022035	AKULA RANJITH	46
36	AVIH2022036	AMIR KAMAL ANSARI	38
37	AVIH2022037	BODA PRIYANKA	46
38	AVIH2022038	BODIGE NITHIN KUMAR	52
39	AVIH2022039	BUCHAGARI NARESH	66
40	AVIH2022040	BULLI VIVEKANANDA REDDY	46
41	AVIH2022041	BURRA MANI VARDHAN	52
42	AVIH2022042	BUSHARAJU MALLIKA	38
43	AVIH2022043	DHARPALLY NITHIN SWAMY	38
44	AVIH2022044	ESALLA SPANDHANA	38
45	AVIH2022045	ESURAJU MAHESH	37
46	AVIH2022046	GADDAM SANJEEV YADAV	51
47	AVIH2022047	CHAKALI MANOBIRAM	46
48	AVIH2022048	GANTHALA AKHILA	36
49	AVIH2022049	GARAPATI PRASANNA	46
50	AVIH2022050	GUNDLA CHARANTEJ	45
51	AVIH2022051	KATHI KRISHNAVAMSHI	45
52	AVIH2022052	KONDI NAVYASREE	40
53	AVIH2022053	KUNATI SRINIDHI	36
54	AVIH2022054	L INDU	36
55	AVIH2022055	GOPAGANI UMESH	36
56	AVIH2022056	GUDABOINA AKASH	35
57	AVIH2022057	KADIPIKONDA MADHUMOHAN REDDY	35
58	AVIH2022058	KAMBALA ABHISHEK	38
59	AVIH2022059	KARNATI VARSHA	39
60	AVIH2022060	KASANI SHIVA SHANKAR	40
61	AVIH2022061	KASU DURGAPARAMESHWARI	58
62	AVIH2022062	SAURABH SINGH	81
63	AVIH2022063	KUNAPURI SRIVIDHYA	45
64	AVIH2022064	MANUR SAKETH	35
65	AVIH2022065	MUDOJU SHIVA KUMAR	45
66	AVIH2022066	MUKKERA JAIPAL REDDY	45
67	AVIH2022067	MERUGU BHARATH	36
68	AVIH2022068	PERKA NAVYA	46
69	AVIH2022069	PRONIT SARDAR	35
70	AVIH2022070	S SIRISHA RAO	35
71	AVIH2022071	SHYAMALA TEJA	42

Avanthi Institute of Engg. & Tech

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

72	AVIH2022072	VENDRU LAKSHMITHULASI	46
73	AVIH2022073	MULKANOORI SAI PRIYA	46
74	AVIH2022074	NAMPELLY MANOJ	51
75	AVIH2022075	NIDHI KUMARI	51
76	AVIH2022076	PUJARI SOWMYA	42
77	AVIH2022077	PULLEMLA YASH NIKHIL	35
78	AVIH2022078	RADAS RAHUL VARMA	52
79	AVIH2022079	SAMALA BHANU PRASAD	35
80	AVIH2022080	SONDE TEJASWINI	42
81	AVIH2022081	SUNKARA SRINADH	41
82	AVIH2022082	SURAM ROHITH	38
83	AVIH2022083	T SRUJAN KUMAR REDDY	38
84	AVIH2022084	THADAKA BALAJI	36
85	AVIH2022085	THORPUNOORI VIVEK ADITHYA GOUD	66
86	AVIH2022086	VAKA UDAY CHANDRA	35
87	AVIH2022087	VANGA JEEVAN KUMAR	39
88	AVIH2022088	VARRE SAIGANITHA	38
89	AVIH2022089	YELISHETTI SHIVA	46
90	AVIH2022090	SRIPATHI PANDITHARADHYULA SNIGDHA	35
91	AVIH2022091	BODDUPALLI SAI BHARGAV	54
92	AVIH2022092	CHIKKULA SHIVA PRASAD	72
93	AVIH2022093	KAMPASATI NAVEEN	54
94	AVIH2022094	PANTHAM GANGADHAR	54
95	AVIH2022095	PASIKA KISHORE	69
96	AVIH2022096	RALLABANDI PRANEETH RAJU	69
97	AVIH2022097	UMMEDA ABHILASH	54
98	AVIH2022098	A SAINATH	68
99	AVIH2022099	MANDATI BHANUCHANDAR	82
100	AVIH2022100	BHEEMAGANI MANASA	69
101	AVIH2022101	BURAKALA ARUN	72
102	AVIH2022102	GADE HARIKRISHNA	68
103	AVIH2022103	MARRI RAHUL	38
104	AVIH2022104	MIRUDODDI MAHESH	42
105	AVIH2022105	MYLA VAGDEVI	38
106	AVIH2022106	NEERNEMULA SHIVA KUMAR	73
107	AVIH2022107	THORNALA NAVEEN REDDY	42
108	AVIH2022108	TORUPUNURI NAVEEN	76
109	AVIH2022109	VEDURU VENKAT REDDY	75
110	AVIH2022110	YARRABOINA GANESH	A65

PRINCIPAL

Avanthi Institute of Engg. & Tech

Avanthi Institute of Engineering and Technology

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

111	AVIH2022111	GADDAM NIKHIL	65
112	AVIH2022112	ANDHEKAR KRANTHI KUMAR	50
113	AVIH2022113	MAMIDI SAIDEEP	73
114	AVIH2022114	ADITH SINGH	64
115	AVIH2022115	AVALA SRINIVAS	37
116	AVIH2022116	GODAVARTHI TEJASH CHOWDARY	64
117	AVIH2022117	KETHAM HARSHAVARDHAN	70
118	AVIH2022118	MARIKANTI GOPI	54
119	AVIH2022119	MEKALA AHALYA	46
120	AVIH2022120	PUTLURI MANI DEEP REDDY	48
121	AVIH2022121	YALAKA AISHWARYA	70
122	AVIH2022122	AMARAGANI LOKESH	70
123	AVIH2022123	BONALA MONEYSH	72
124	AVIH2022124	GUNDOJU PRADEEP CHARY	48
125	AVIH2022125	MADHIPATLA AKHILA	81
126	AVIH2022126	MOHAMMED NADEEM ANWAR	41
127	AVIH2022127	PATHAKUNTA PRABHAKAR REDDY	54
128	AVIH2022128	PATHKI TEJA	69
129	AVIH2022129	PILLI SHIRISHA	41
130	AVIH2022130	SURVI VIVEKANANDA GOUD	72
131	AVIH2022131	GOGINENI HARSHAVARDHAN	52
132	AVIH2022132	KOUDAGANI RAMYA	69
133	AVIH2022133	GUGULOTHU VISHNUVARDHAN	62
134	AVIH2022134	B DEVENDAR-8790553286	80
135	AVIH2022135	BHEEMREDDY SAKESTH REDDY	72
136	AVIH2022136	KUKKALA SRIVIDYA	81
137	AVIH2022137	MANDAVA POORNA SHANKAR	81
138	AVIH2022138	MODUGU SHASHIDHAR REDDY	72
139	AVIH2022139	PURWANTH MOUNIKA	81
140	AVIH2022140	RAGEERU TEJESHWAR GOUD	81
141	AVIH2022141	VUDUTHURI VENKATESHWAR REDDY	80
142	AVIH2022142	YALAGALA NUKAIAH	81
143	AVIH2022143	BAIRU SAITEJA	83
144	AVIH2022144	DOLAI SOUVIK	72
145	AVIH2022145	MALLELLI DEVENDAR GOUD	72
146	AVIH2022146	BURRA MANIDEEP	80
147	AVIH2022147	DERANGULA MOHAN SAI TEJA	72
148	AVIH2022148	GADDAM EEKSHITHA	83
149	AVIH2022149	GANGANAMONI SAI CHARAN	40
150	AVIH2022150	GURRALA NAGA SAI	282

PRINCIPAL

Avanthi Institute of Engg. & Tech

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

72	JANGILI TEJASWI	AVIH2022151	151
73	KOMMAVARAPU VISHNU KOWSIK	AVIH2022152	152
78	KONATHAM MAHESH REDDY	AVIH2022153	153
62	MALLAMPATI JASHWANTH	AVIH2022154	154
37	MANDALAPU GOWTHAM	AVIH2022155	155
72	MEDAGAM RAMYA	AVIH2022156	156
72	REGULA GIRISH KUMAR	AVIH2022157	157
69	VENNU SAI TEJA	AVIH2022158	158
48	VENKATA SWAMY PUPPALA	AVIH2022159	159
71	BARADI SAI KIRAN	AVIH2022160	160
62	BASANI PAVAN	AVIH2022161	161
68	GADE SRAVYA SRI	AVIH2022162	162
70	GOJJI SIDDHARTHA	AVIH2022163	163
82	GUNTOJU YASHWANTH	AVIH2022164	164
78	KAKULARAM ANAND REDDY	AVIH2022165	165
71	KANKANALA MANASA	AVIH2022166	166
70	MEDAGAM RAMANJI REDDY	AVIH2022167	167
72	PENNERU HARSHITHA	AVIH2022168	168
71	POLA SHANKER REDDY	AVIH2022169	169
48	S DATHA SHOURI	AVIH2022170	170
70	TALLAGADDA ABHINAV REDDY	AVIH2022171	171
71	TOTAKOORA LAKSHMI HARSHITHA	AVIH2022172	172
78	VAGGA ANAND	AVIH2022173	173
80	YELAGABOINA ABHINAYA SRI	AVIH2022174	174
60	MUTHYALA HARI PRASAD	AVIH2022175	175
76	D SHARATH CHANDRA GOUD	AVIH2022176	176
82	KANDULA RAJNIKANTH	AVIH2022177	177
82	U SHIVA	AVIH2022178	178
75	ALAKUNTLA BHARATH	AVIH2022179	179
84	PARSHAM KALYAN	AVIH2022180	180
84	PULIYALA RAGHAVENDRA REDDY	AVIH2022181	181
84	RAVULA PREMSAI	AVIH2022182	182
81	KOLLI SATYABAJI PAVAN KISHORE	AVIH2022183	183
72	DASARI AKHIL	AVIH2022184	184
86	PERIKA NITHIN	AVIH2022185	185
48	CHANDDRAGIRI NANDAKISHORE BABU	AVIH2022186	186
72	MANDALA POOJITHA	AVIH2022187	187
69	KANDAGATLA SATHYANARAYANA	AVIH2022188	188
82	DYVANPALLY SHIVA TEJA	AVIH2022189	189
0 82	GADDAM LAXMI TULASI	AVIH2022190	190

Avanthi Institute of Engg. & Tech

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

191	AVIH2022191	HARIOM GUPTA	80
192	AVIH2022192	MADARAM MANASA	80
193	AVIH2022193	PEDAPATI NEEHARIKA	58
194	AVIH2022194	T MAHALAKSHMI	82
195	AVIH2022195	YELKAPALLY MANASA	85
196	AVIH2022196	GOLLA NAGARAJU	81
197	AVIH2022197	ARIGELA MANOJ	82
198	AVIH2022198	BANOTH SHIVAJI	84
199	AVIH2022199	GUNDU SANJEEV KUMAR	76
200	AVIH2022200	JARPULA MOUNIKA	82
201	AVIH2022201	SAI KRISHNA KORRI	82
202	AVIH2022202	SUNKARI PRAVEEN	83
203	AVIH2022203	THOTTETI DEVENDER	82
204	AVIH2022204	VAVILALA MAHESH	82
205	AVIH2022205	MUCHIKA CHAITANYA RANI	84

PRINCIPAL

Avanthi Institute of Engg. & Tech

Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

Gunthapally,

Date: 02-11-2022.

From

The Principal, Avanthi Institute of Engineering & Technology, Gunthapally.

To

Chairperson
Governing Body (GB),
Avanthi Institute of Engineering & Technology,
Gunthapally.

Dear Sir/Madam

Sub: Request to sanction of Freeship Amount.

Reference: 1. Avanthi Freeship Internal Policy.

This is to inform you that Avanthi Institute of Engineering &Technology conducted an exam "Avanthi Freeship Policy Test" on 21-09-2022, 24-09-2022 and 12-10-2022 to the students who are willing to join in B category seats of first year B.Tech program for the academic year 2022-23. Based on their performance in the test, they were awarded marks and eligibility for Freeships in accordance with the rules and regulations of Freeship internal policy. I enclose the list of 205 students who are qualified in the test for your reference. In this regard, I request you to please forward this students list to the Governing Body for sanctioning the freeships amount for further proceedings.

The details are also enclosed for your consideration

Thanking you sir

Yours faithfully,

Avanthi Institute of Engg. & Tech Guntihapally (V). Abdullapurmet (MdI) R.R.Dist

PRINCIPAL

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

AVANTHI FREESHIP STUDENTS ACADEMIC YEAR 2022-2023

The following is the list of students 205 are selected from Avanthi Freeship Policy Test. Based on the merit of the results the fee concession is given to the below students.

S.No	HallTicket No	Student Name	Amount
1	22Q61A0443	BAILADUGU SAI RAMA KRISHNA	35000
2	22Q61A0444	BODDUPALLI HEMANTH KUMAR	40000
3	22Q61A0445	BOPPU PAVAN	35000
4	22Q61A0446	CHAVA VAMSHI	35000
5	22Q61A0447	CHETTI HARISH GOUD	35000
6	22Q61A0448	CHINNOLLA VINEEL	35000
7	22Q61A0449	CHITTETI KEERTHI BHARGAVI	15000
8	22Q61A0450	GADDAM SAHARIKA	37500
9	22Q61A0451	GOPISHETTI NIKITHA	30000
10	22Q61A0452	GORLA PRANAY	35000
11	22Q61A0453	GURRAM PAVANI	37500
12	22Q61A0454	KANDATI VINAY REDDY	32500
13	22Q61A0455	MADASTU KEERTHI	30000
14	22Q61A0457	MAMILLA ARUN TEJA	35000
15	22Q61A0458	MD KHALEEL	35000
16	22Q61A0459	MIRAMPALLY NIKESH	40000
17	22Q61A0460	MIRYALA SRILEKHA	40000
18	22Q61A0485	MOHD ALTAF HUSSAIN	25000
19	22Q61A0486	ORPULA SANTHOSH	35000
20	22Q61A0487	PALLA VENKATA NARAYANA REDDY	25000
21	22Q61A0488	PASULA KARTHIK	35000
22	22Q61A0489	PATHIPAKALA ROHITH	40000
23	22Q61A0490	PODHILA THIRUPATHI RAO	40000
24	22Q61A0491	PONNAM AKSHAY	35000
25	22Q61A0492	RANGU SHIVA	35000
26	22Q61A0493	VEERAMUSTI BHARATH	35000
27	22Q61A0494	VELMA SRIJA	25000
28	22Q61A0496	RUPANI DINESH	32500
29	22Q61A0508	BALUSU HEMANTH SAI	5000
30	22Q61A0542	AADI SAI NITHYA	10000
31	22Q61A0543	AVULA RAKESH	10000
32	22Q61A0544	BODA TEJA	5000
33	22Q61A0545	GORLE TEJASRI	5000
34	22Q61A0546	GOURAV RAJPUROHIT	12500

PRINCIPAL Avanthi Institute of Engg. & Tech

ATTORNAMO ATTORN

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

35	22Q61A0547	AKULA RANJITH	10000
36	22Q61A0549	AMIR KAMAL ANSARI	5000
37	22Q61A0551	BODA PRIYANKA	10000
38	22Q61A0552	BODIGE NITHIN KUMAR	15000
39	22Q61A0553	BUCHAGARI NARESH	20000
40	22Q61A0554	BULLI VIVEKANANDA REDDY	10000
41	22Q61A0555	BURRA MANI VARDHAN	15000
42	22Q61A0556	BUSHARAJU MALLIKA	5000
43	22Q61A0557	DHARPALLY NITHIN SWAMY	5000
44	22Q61A0559	ESALLA SPANDHANA	5000
45	22Q61A0560	ESURAJU MAHESH	5000
46	22Q61A0561	GADDAM SANJEEV YADAV	15000
47	22Q61A0562	CHAKALI MANOBIRAM	10000
48	22Q61A0563	GANTHALA AKHILA	5000
49	22Q61A0564	GARAPATI PRASANNA	12500
50	22Q61A05A6	GUNDLA CHARANTEJ	10000
51	22Q61A05A7	KATHI KRISHNAVAMSHI	10000
52	22Q61A05A8	KONDI NAVYASREE	7000
53	22Q61A05A9	KUNATI SRINIDHI	5000
54	22Q61A05B0	L INDU	2500
55	22Q61A05B2	GOPAGANI UMESH	5000
56	22Q61A05B4	GUDABOINA AKASH	5000
		KADIPIKONDA MADHUMOHAN	
57	22Q61A05B5	REDDY	5000
58	22Q61A05B6	KAMBALA ABHISHEK	5000
59	22Q61A05B7	KARNATI VARSHA	5000
60	22Q61A05B8	KASANI SHIVA SHANKAR	7500
61	22Q61A05B9	KASU DURGAPARAMESHWARI	17500
62	21Q61A0309	SAURABH SINGH	35000
63	22Q61A05C2	KUNAPURI SRIVIDHYA	10000
64	22Q61A05C3	MANUR SAKETH	5000
65	22Q61A05C7	MUDOJU SHIVA KUMAR	10000
66	22Q61A05C8	MUKKERA JAIPAL REDDY	10000
67	22Q61A05G9	MERUGU BHARATH	5000
68	22Q61A05H0	PERKA NAVYA	12500
69	22Q61A05H1	PRONIT SARDAR	5000
70	22Q61A05H2	S SIRISHA RAO	5000
71	22Q61A05H3	SHYAMALA TEJA	10000
72	22Q61A05H4	VENDRU LAKSHMITHULASI	12500
72	22Q61A05H5	MULKANOORI SAI PRIYA	12500
73		NAMPELLY MANOJ 0 /	15000

Avanthi Institute of Engg. & Tech

Avanthi Institute of Engg. & Tech

Avanthi Institute of Engineering and Precime Repost

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

75	22Q61A05H7	NIDHI KUMARI	15000
76	22Q61A05H9	PUJARI SOWMYA	10000
77	22Q61A05I0	PULLEMLA YASH NIKHIL	5000
78	22Q61A05I1	RADAS RAHUL VARMA	15500
79	22Q61A05I2	SAMALA BHANU PRASAD	2000
80	22Q61A05I3	SONDE TEJASWINI	10000
81	22Q61A05I4	SUNKARA SRINADH	7500
82	22Q61A05I5	SURAM ROHITH	5000
83	22Q61A05I6	T SRUJAN KUMAR REDDY	5000
84	22Q61A05I7	ТНАDAKA BALAJI	5000
85	22Q61A05I8	THORPUNOORI VIVEK ADITHYA GOUD	20000
86	22Q61A05I9	VAKA UDAY CHANDRA	2000
87	22Q61A05J0	VANGA JEEVAN KUMAR	6000
88	22Q61A05J1	VARRE SAIGANITHA	5000
89	22Q61A05J2	YELISHETTI SHIVA	12000
00	220(11(727	SRIPATHI PANDITHARADHYULA	2000
90	22Q61A6737	SNIGDHA	2000
91	22Q61A6738	BODDUPALLI SAI BHARGAV	17500
92	22Q61A6739	CHIKKULA SHIVA PRASAD	25000
93	22Q61A6740	KAMPASATI NAVEEN	17500
94	22Q61A6741	PANTHAM GANGADHAR	17500
95	22Q61A6742	PASIKA KISHORE	20000
96	22Q61A6743	RALLABANDI PRANEETH RAJU	20000
97	22Q61A6744	UMMEDA ABHILASH	17500
98	22Q61A6745	A SAINATH	20000
99	22Q61A6746	MANDATI BHANUCHANDAR	30000
100	22Q61A6747	BHEEMAGANI MANASA	20000
101	22Q61A6748	BURAKALA ARUN	25000
102	22Q61A6749	GADE HARIKRISHNA	20000
103	22Q61A6750	MARRI RAHUL	5000
104	22Q61A6751	MIRUDODDI MAHESH	10000
105	22Q61A6752	MYLA VAGDEVI	5000
106	22Q61A6753	NEERNEMULA SHIVA KUMAR	25000
107	22Q61A6754	THORNALA NAVEEN REDDY	10000
108	22Q61A6755	TORUPUNURI NAVEEN	27500
109	22Q61A6756	VEDURU VENKAT REDDY	27500
110	22Q61A6757	YARRABOINA GANESH	20000
111	22Q61A6758	GADDAM NIKHIL	20000
112	22Q61A6759	ANDHEKAR KRANTHI KUMAR	15000
113	22Q61A6760	MAMIDI SAIDEEP	NCIPAL

Avanthi Institute of Engg. & Tech Guntihapally (V), Abdullapurmet (Midl) R.R.Dist

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

114	22Q61A6640	ADITH SINGH	20000
115	22Q61A6641	AVALA SRINIVAS	5000
116	22Q61A6642	GODAVARTHI TEJASH CHOWDARY	20000
117	22Q61A6643	KETHAM HARSHAVARDHAN	22500
118	22Q61A6644	MARIKANTI GOPI	17500
119	22Q61A6645	MEKALA AHALYA	12000
120	22Q61A6646	PUTLURI MANI DEEP REDDY	15000
121	22Q61A6647	YALAKA AISHWARYA	22500
122	22Q61A6648	AMARAGANI LOKESH	22500
123	22Q61A6649	BONALA MONEYSH	25000
124	22Q61A6650	GUNDOJU PRADEEP CHARY	15000
125	22Q61A6651	MADHIPATLA AKHILA	30000
126	22Q61A6652	MOHAMMED NADEEM ANWAR	10000
127	22Q61A6653	PATHAKUNTA PRABHAKAR REDDY	17500
128	22Q61A6654	PATHKI TEJA	22500
129	22Q61A6655	PILLI SHIRISHA	10000
130	22Q61A6656	SURVI VIVEKANANDA GOUD	25000
131	22Q61A6657	GOGINENI HARSHAVARDHAN	17500
132	22Q61A6658	KOUDAGANI RAMYA	22500
133	22Q61A6659	GUGULOTHU VISHNUVARDHAN	20000
134	21Q61A0449	B DEVENDAR-8790553286	30000
135	21Q61A0450	BHEEMREDDY SAKESTH REDDY	25000
136	21Q61A0451	KUKKALA SRIVIDYA	30000
137	21Q61A0452	MANDAVA POORNA SHANKAR	35000
138	21Q61A0453	MODUGU SHASHIDHAR REDDY	25000
139	21Q61A0454	PURWANTH MOUNIKA	30000
140	21Q61A0455	RAGEERU TEJESHWAR GOUD	30000
141	21Q61A0456	VUDUTHURI VENKATESHWAR REDDY	30000
142	21Q61A0457	YALAGALA NUKAIAH	30000
143	21Q61A0458	BAIRU SAITEJA	35000
144	21Q61A6608	DOLAI SOUVIK	25000
145	21Q61A6646	MALLELLI DEVENDAR GOUD	25000
146	21Q61A6647	BURRA MANIDEEP	30000
147	21Q61A6648	DERANGULA MOḤAN SAI TEJA	25000
148	21Q61A6649	GADDAM EEKSHITHA	35000
149	21Q61A6650	GANGANAMONI SAI CHARAN	10000
150	21Q61A6651	GURRALA NAGA SAI	35000
151	21Q61A6652	JANGILI TEJASWI	25000
152	21Q61A6653	KOMMAVARAPU VISHNU KOWSIK	27000
153	21Q61A6654	KONATHAM MAHESH REDDY	30000

PRINCIPAL

Avanthi Institute of Engg. & Tech.

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

154	21Q61A6655	MALLAMPATI JASHWANTH	20000
155	21Q61A6656	MANDALAPU GOWTHAM	5000
156	21Q61A6657	MEDAGAM RAMYA	25000
157	21Q61A6658	REGULA GIRISH KUMAR	25000
158	21Q61A6662	VENNU SAI TEJA	22500
159	21Q61A6663	VENKATA SWAMY PUPPALA	15000
160	21Q61A6746	BARADI SAI KIRAN	25000
161	21Q61A6747	BASANI PAVAN	20000
162	21Q61A6749	GADE SRAVYA SRI	22500
163	21Q61A6750	GOJJI SIDDHARTHA	25000
164	21Q61A6751	GUNTOJU YASHWANTH	35000
165	21Q61A6752	KAKULARAM ANAND REDDY	30000
166	21Q61A6753	KANKANALA MANASA	25000
167	21Q61A6754	MEDAGAM RAMANJI REDDY	25000
168	21Q61A6756	PENNERU HARSHITHA	27500
169	21Q61A6757	POLA SHANKER REDDY	25000
170	21Q61A6758	S DATHA SHOURI	15000
171	21Q61A6759	TALLAGADDA ABHINAV REDDY	25000
172	21Q61A6760	TOTAKOORA LAKSHMI HARSHITHA	25000
173	21Q61A6761	VAGGA ANAND	30000
174	21Q61A6762	YELAGABOINA ABHINAYA SRI	30000
175	21Q61A6763	MUTHYALA HARI PRASAD	20000
176	21Q61A0212	D SHARATH CHANDRA GOUD	30000
177	21Q61A0213	KANDULA RAJNIKANTH	35000
178	21Q61A0214	U SHIVA	32500
179	21Q61A0305	ALAKUNTLA BHARATH	30000
180	21Q61A0307	PARSHAM KALYAN	37500
181	21Q61A0308	PULIYALA RAGHAVENDRA REDDY	37500
182	22Q65A0306	RAVULA PREMSAI	37500
183	22Q65A0514	KOLLI SATYABAJI PAVAN KISHORE	30000
184	22Q65A0515	DASARI AKHIL	25000
185	22Q65A0516	PERIKA NITHIN	46000
K a l		CHANDDRAGIRI NANDAKISHORE	
186	22Q65A0517	BABU	15000
187	22Q65A0518	MANDALA POOJITHA	25000
188	22Q65A0519	KANDAGATLA SATHYANARAYANA	22500
189	22Q65A0414	DYVANPALLY SHIVA TEJA	35000
190	22Q65A0415	GADDAM LAXMI TULASI	32500
191	22Q65A0416	HARIOM GUPTA	30000
192	22Q65A0417	MADARAM MANASA	30000
193	22Q65A0418	PEDAPATI NEEHARIKA	19500

Avanthi Institute of Engg. & Tech

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

194	22Q65A0419	T MAHALAKSHMI	30000
195	22Q65A0420	YELKAPALLY MANASA	40000
196	22Q65A0421	GOLLA NAGARAJU	35000
197	22Q65A0206	ARIGELA MANOJ	32500
198	22Q65A0207	BANOTH SHIVAJI	35000
199	22Q65A0208	GUNDU SANJEEV KUMAR	30000
200	22Q65A0209	JARPULA MOUNIKA	35000
201	22Q65A0210	SAI KRISHNA KORRI	35000
202	22Q65A0211	SUNKARI PRAVEEN	35000
203	22Q65A0212	THOTTETI DEVENDER	35000
204	22Q65A0213	VAVILALA MAHESH	35000
205	22Q65A0214	MUCHIKA CHAITANYA RANI	32500

TOTAL STUDENTS COUNT: 205

TOTAL AMOUNT: Rs 43,58,500

PRINCIPAL

Avanthi Institute of Engg. & Tech
Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

Our institution committed to provide freeships to poor and economically backward students. It is applicable to the students who do not have parents or either father or mother has lost their lives they could avail the opportunity. We also offer freeships whose parental annual income less than one lakh. We ensure that this financial support will helps the students to reach their goals. Here we are providing the list of students to whom we have provided freeship from college along with their requested letters.

S.No	HallTicket No	Student Name	Amount
1	21Q61A0538	AVULA KOUSHIK	10000
2	21Q61A0540	CHETLAPALLY BHAVYA	10000
3	21Q61A0541	D UDAY KUMAR	12500
4	21Q61A0542	GOTTIMUKKULA LAHARI	10000
5	21Q61A0543	AADIREDDY KIRAN TEJA	12500
6	21Q61A0544	AKKENAPALLY PRAVIN DURIGAIAH	15000
7	21Q61A0545	ANUGU ROHITH REDDY	10000
8	21Q61A0547	BANDA HARISH YADAV	15000
9	21Q61A0548	BARLA SRI KODANDA VARMA	15000
10	21Q61A0549	BETHALA KEERTHI	20000
11	21Q61A0550	BOBBALI REVATHI	10000
12	21Q61A0551	BODIGE POOJA	10000
13	21Q61A0552	CHENREDDY PRAVEEN	5000
14	21Q61A0553	DESHINI NISCHALA PRIYA	1000
15	21Q61A0554	GALIPELLI ALEKHYA	15000
16	21Q61A0555	MALLELA DEEPAK	5000
17	21Q61A0556	KAJJAM SAI DILEEP	1500
18	21Q61A0558	KODARI VENKATESH	7500
19	21Q61A0559	KOKKU HARSHITHA	1250
20	21Q61A0560	KOKKULA JAGRUTH	1500
21	21Q61A0597	PEDADA HARI	250
22	21Q61A05A0	KUNDURU PRATHYUSHA	1000
23	21Q61A05A1	LADE ACHYUTH KUMAR	750
24	21Q61A05A2	MAMATA YADAV	1000
25	21Q61A05A3	MULAGUNDLA SOWJANYA	1500
26	21Q61A05A4	MUNJULURI VEERESH KUMAR	1500
27	21Q61A05A6	KOTA KARTHIK	1000
28	21Q61A05A7	KURIMILLA NARENDHAR	1000
29	21Q61A05A8	MALLAVARAPU VARAPRASAD	1000
30	21Q61A05A9	MULI GUNASHEKAR REDDY A	700
31	21Q61A05B0	MUNUGOTI KODANDA RAMATAH PRINCIPAL	1750

Avanthi Institute of Engg. & Tech Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

32	21Q61A05B1	NEERADI NISHWANTH	10000
33	21Q61A05B2	PENDYALA ROOPESH SAI	30000
34	21Q61A05B3	BOINI MADHU	22500
35	21Q61A05B4	POLOJU ĐEVIKA	10000
36	21Q61A05B5	P KAMAL	65000
37	21Q61A05B6	SHAIK HUSSAIN BASHA	15000
38	21Q61A05B8	T SRISHA	15000
39	21Q61A05B9	TATIPARTHI VINEETH REDDY	20000
40	21Q61A05F0	PATIL SAI RAGHAVENDRA	15000
41	21Q61A05F1	PUNNA ADITYA	10000
42	21Q61A05F2	SHETTY SUJITH	5000
43	21Q61A05F3	THAMMANENI PRASANTH REDDY	20000
44	21Q61A05F4	VADTHYAVATH MANASA	15000
45	21Q61A05F5	DHADI VYSHALI	15000
46	21Q61A05F6	BONDLA YAVAN TEJA	10000
47	21Q61A05F7	TELUKUTLA ADITYA REDDY	10000
48	21Q61A05F8	ESSAPALLY ARAVIND	25000
49	21Q61A05F9	DUDDUGUNTA SAI KRISHNA	15000
50	21Q61A05G0	NALLURI VENKATAPAVAN	15000
51	20Q61A0524	HAFSA NOUSHEEN	2000
52	20Q61A0543	AKASH DHAPTE	17000
53	20Q61A0544	ANTHATI MAHESH	5000
54	20Q61A0545	ATMAKUR NARAYANA SAKETH	30000
55	20Q61A0546	B SARVARI BHARADWAJ	2000
56	20Q61A0547	BANDI CHANDANA GOUD	2500
57	20Q61A0548	BOTUKA SIDDARTHA	15000
58	20Q61A0550	SHETKAR HARSHITHA PATIL	2000
59	20Q61A0551	CHINREDDY RAKESH REDDY	15000
60	20Q61A0552	DOSAI REVANTH	5000
61	20Q61A0553	ETIKALA UPENDAR REDDY	7500
62	20Q61A0554	G V BHAVANA	20000
63	20Q61A0555	GADDAM KRISHNATEJA	5000
64	20Q61A0556	JANAGARI SRITHAN REDDY	5000
65	20Q61A0557	KETHIREDDY HARSHITHA	5000
66	20Q61A0558	KOMPELLI JALANDHAR	15000
67	20Q61A0559	KONGARI SHARATH CHANDRA	15000
68	20Q61A0560	KOTHA LIKITH SAI REDDY	15000
69	20Q61A0588	LANKELA UDAY KIRAN REDDY	2000
70	20Q61A0589	MADIREDDY AJAY REDDY	15000
71	20Q61A0590	MAHAMMAD SHENNIKINCIPAL	2500

Avanthi Institute of Engg. & Tech Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

72	20Q61A0591	MALREDDY ADITHYA	15000
73	20Q61A0592	MANDUGULA SADHWIKA	5000
74	20Q61A0593	MINUKURI SAI PRAKASH REDDY	20000
75	20Q61A0594	MIYAPURAM RAJA VIKAS	20000
76	20Q61A0595	PATIBANDLA CHAITANYA	25000
77	20Q61A0597	SINGIREDDY MAHALAXMI	5000
78	20Q61A0598	SINGIREDDY RUTHISH REDDY	20000
79	20Q61A0599	SOMAGANI NAVYA	5000
80	20Q61A05A0	VANKOJU PURNANANDHA	20000
81	20Q61A05A1	YASA MAHESH REDDY	15000
82	20Q61A05A2	GAJAULA VENKATESH	20000
83	20Q61A05A3	PADALA ABHILASH	25000
84	21Q65A0514	DANTAPALLY SAI KRISHNA REDDY	30000
85	21Q65A0516	KATKURI RAJESH	30000
86	21Q65A0517	RAMYA SRI SAI KANUMOLU	20000
87	20Q61A6706	GOUTE AKHILA	35000
88	20Q61A6707	KONDAKINDI VINAY REDDY	5000
89	20Q61A6708	PATLOLLA ARAVIND REDDY	35000
90	20Q61A6709	VSRSGNP PANTHESWARA	5000
91	21Q65A6704	JANAGAM SRIHARI	35000
92	20Q61A6618	SHARMA MEENAKSHI	30000
93	20Q61A6622	BHAGATH VAMSHI	20000
94	20Q61A6623	CHINTHAKINDI MURARI	25000
95	20Q61A6624	DUDDUKURI SANDEEP	25000
96	20Q61A6625	GOSHIKA SHIVA KRISHNA	20000
97	20Q61A6626	KATEPALLY SAIKUMAR	25000
98	20Q61A6627	KOPPISETTI JOSHNA SATWIKA	3000
99	20Q61A6629	PADAMATI KARTHIK REDDY	30000
100	20Q61A6630	SANKU VAISHNAVI	2000
101	20Q61A6631	SUNKOJU HARINI	3500
102	20Q61A6632	VEERAMALLA RAMU	25000
103	20Q61A0411	KAMAGANI AKHIL	30000
104	20Q61A0432	ALLURI YESHWANTHI	30000
105	20Q61A0433	BOYAPALLY KOUSHIK	3000
106	20Q61A0434	CHINTHALA SAIKUMAR REDDY	2000
107	20Q61A0435	JAGTAP SHIRISH	15000
108	20Q61A0436	MARRI SHIVANATH REDDY	2500
109	20Q61A0437	MEDAM SHIVA SAI REDDY	2500
110	20Q61A0438	MOHAMMAD IMRAN	2000
111	20Q61A0439	MOHINI SAIVAMSHI PRINCIPAL	35000

Avanthi Institute of Engg. & Tech Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

112	20Q61A0440	MUDDAM VI NUTHNA	35000
13	20Q61A0442	PAIDIPELLI ABHINAV	25000
14	20Q61A0443	PANNALA SRAVANA SANDHYA	30000
15	20Q61A0444	PONSHETTI SATHVIKA	20000
16	20Q61A0445	SAKETI ANUSHA	30000
117	20Q61A0446	SAPPATI ANAND REDDY	22500
118	20Q61A0447	SHAIK NAZEER	30000
119	20Q61A0448	SYED NEHA	35000
120	20Q61A0450	VELPULA RAMKUMAR	33000
121	20Q61A0451	VENDRU SUSMITHA	25000
122	20Q61A0452	SACHU UMA MAHESHWAR RAO	35000
123	20Q61A0454	CHOUTY AKASH	35000
124	20Q61A0455	JAMMISETTY VENU	35000
125	20Q61A0456	PISKE NAVYA	20000
126	17Q65A0408	BODHU SAI KIRAN	5000
127	21Q65A0412	CHINTHAKINDI AKHIL	30000
128	21Q65A0413	DANDUPATI SAITEJA	3500
129	21Q65A0414	DASARI NAVEEN KUMAR	3000
130	21Q65A0415	G ANAND	4000
131	21Q65A0416	GADDAM VINAY YADAV	3500
132	21Q65A0417	GURRALA PREAM SAI	6500
133	21Q65A0418	KAKANI HARSHITH	3000
134	21Q65A0419	NAGULAPALLY GANESH	3200
135	21Q65A0420	NEELA LAXMAN	3200
136	21Q65A0422	SWARNA KIRANBABU	3200
137	21Q65A0423	VADDEPALLY RAKESH	2500
138	21Q65A0424	VARDA MANASA	3500
139	21Q65A0425	VEERLA SAIPAVAN	3250
140	21Q65A0427	P JAYASRI GOUD	3000
141	20Q61A0209	GUNTI MAHESH	2500
142	21Q65A0207	CHALADI RAKESH ROHAN	2500
143	21Q65A0208	CHILVERU SWETHA	3350
144	21Q65A0209	D THARUN KUMAR REDDY	2750
145	21Q65A0210	DODLE NANDU	3500
146	21Q65A0211	DHARSHANAM ABHISHEK	3500
147	21Q65A0212	DUMPETA NIKHIL	3000
148	21Q65A0213	GOLLAPELLI VIGNESH	3000
149	21Q65A0214	GUDIPATI BHANUPRAKASH 1	3500
150	21Q65A0215	GUNDEMONI MADHU	2500
151	21Q65A0216	GUNDETI SHIREESHA PRINCUPIAL Avanthi Institute of Engg.	3000

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

152	21Q65A0217	JAMBULA VENKATESH	30000
153	21Q65A0218	KARAMTHOTU VINOD	35000
154	21Q65A0219	KOTHAKAPU JYOSHNA	30000
155	21Q65A0220	KOTHI BHANU PRAKASH	25000
156	21Q65A0221	KUCHANI SAI SRUJAN	27500
157	21Q65A0222	KUMARAM MOUNIKA	30000
158	21Q65A0223	KUNCHALA TRINATH	32500
159	21Q65A0224	KUPPI SAIKUMAR REDDY	35000
160	21Q65A0225	LAVOORI SAKRU	35000
161	21Q65A0226	LOKAM SHIVA KRISHNA	35000
162	21Q65A0227	MERUGU SNEHITH KUMAR	32500
163	21Q65A0228	MUDAVATH SUBHASH	27500
164	21Q65A0229	MULA SRI CHANDANA	35000
165	21Q65A0230	PARSA VINAY	35000
166	21Q65A0231	PEBBEATE SRINIVAS	35000
167	21Q65A0232	PENDEM BHARADWAJ	25000
168	21Q65A0233	POCHAM NAVEENKUMAR	25000
169	21Q65A0235	PUJARI BHASKAR	27500
170	21Q65A0236	PULLOLLA RAJESH	30000
171	21Q65A0237	RADARAM THANMAY KUMAR	30000
172	21Q65A0238	RAGHURAM NITHEESH KUMAR REDDY	32000
173	21Q65A0239	RAMAVATH SANDHYA	30000
174	21Q65A0240	S SUNIL	30000
175	21Q65A0242	SILAPALLY SRIDHAR	35000
176	21Q65A0243	THATIKONDA GNANESHWAR	30000
177	21Q65A0244	VANGALA SAIPRASAD	30000
178	21Q65A0245	TUMMALA NAGESH	30000
179	20Q61A0304	PAKA SHIVA SAI	35000
180	21Q65A0306	ABBANONI SANDEEP	35000
181	21Q65A0307	ATMURI RAHUL	35000
182	21Q65A0308	BANOTH SWETHA	40000
183	21Q65A0309	BHUPATHI MAHESH	40000
184	21Q65A0310	BODA NARSI REDDY	30000
185	21Q65A0311	BODIDA SHIVAKUMAR	40000
186	21Q65A0312	CHETTY GOWTHAM	30000
187	21Q65A0313	DHANAVATH VIJAY	40000
188	21Q65A0314	E GANESH GOUD	36000
189	21Q65A0315	EARLA SRIKANTH	35000
190	21Q65A0316	GOUNI SAIKIRAN	30000
191	21Q65A0317	GORLA NAGA PRASAD	35000

Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

192	21Q65A0318	K SOWMYA	35000		
193	21Q65A0319	KATTELA CHANDRAKANTH	35000		
194	21Q65A0321	MUNUKUNTLA HEMANTH REDDY	35000		
195	21Q65A0322	PERUMALLA VIJAY KUMAR	35000		
196	21Q65A0323	RAMAVATH RAMCHANDER	40000		
197	21Q65A0324	RELANGI PALLAVI	40000		
198	21Q65A0325	SHAIK AZEEM	35000		
199	21Q65A0326	SIRIPURAM SWAROOP KUMAR	35000		
200	19Q61A0534	BOJJA SAI CHARAN REDDY	5000		
201	19Q61A0536	GUNTOJU RENUKA	10000		
202	19Q61A0537	I RAGHAVENDRA REDDY	3000		
203	19Q61A0538	JITTA RAJASHEKAR	8000		
204	19Q61A0539	KATAM SNEHA	5000		
205	19Q61A0540	KOLLI PRIYANKA CHOWDARY	5000		
206	19Q61A0541				
207	19Q61A0543	ABHINAV KUMAR SINGH	15000		
208	19Q61A0544	AJAYKUMAR VAKITI	8000		
209	19Q61A0546	ARYAN MUNI	20000		
210	19Q61A0547	BALASANI PRANEETHSAI	5000		
211	19Q61A0548	BUDDE CHANDU	20000		
212	19Q61A0550	CHINTANIPPU VAMSHI	5000		
213	19Q61A0553	DEVARAKONDA VINAY	5000		
214	19Q61A0554	DONDA THULASI	20000		
215	19Q61A0555	G GURU CHARAN	10000		
216	19Q61A0556	GADIGA GAYATHRI NAND	5000		
217	19Q61A0559	KATTA ASRITH REDDY	5000		
218	19O61A0560	KAYYALA AKSHAY YADAV	5000		
219	19Q61A0595	PUNNA SAI MOUNIKA	18000		
220	19Q61A0596	SABBU YASHWANTH REDDY	5000		
221	19Q61A0597	SIDDIPETA JENNY JAMES	14000		
222	19Q61A0598	THATI DEEPIKAA	7000		
223	19Q61A0599	THATI DIKSHITA	7000		
224	19Q61A05A0	VALLEM SRIVANI	5000		
225	19Q61A05A1	VEERAVALLI SAI PAVAN	12500		
226	19Q61A05A2	YERRAMSETTI SAI	5000		
227	19Q61A05A4	KOTHA MANJUBHARGAVI	16500		
228	19Q61A05A5	KUNUGUNTLA SRI HARSHA	5000		
229	19Q61A05A6		5000		
230	19Q61A05A7	MARINELA NAVYA	5000		
231	19Q61A05A8	1.11	15000		

PRINCIPAL Avanthi Institute of Engg. & Tech

Guntihapally (V). Abdullapunnet (Mdh R.R Dist

Avanthi Institute of Engineering and Technology

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1
232	19Q61A05B0	PILLI SRI SAI RASHIMITHA	35000
233	19Q61A05B1	POLASA LIKITHHA	5000
234	19Q61A05B3	PREETHHI SINGH	5000
235	19Q61A05B4	RANGA RAJASHEKHAR	5000
236	19Q61A05B5	RUDRAVELLY NAGASANTHOSHITHA	5000
237	19Q61A05B6	SALLA SAIKIRAN REDDY	10000
238	19Q61A05B7	SAMBANGI SAI SRAVANI	5000
239	19Q61A05B8	THIMMA REDDY MAHESHWARA REDDY	5000
240	19Q61A05B9	THOTA NISHANTH	5000
241	19Q61A05C0	VEERAVAJHULA SAI UTTAM DUTT	15000
242	19Q61A05E8	VODNALA RAJ KUMAR	5000
243	19Q61A05E9	YADAMALLI PRANEETH	45000
244	19Q61A05F0	YADLA YASHWANTH	5000
245	19Q61A05F1	YARRABELLI ANIL REDDY	20000
246	19Q61A05F2	GALVE RAKSHITH	20000
247	18Q61A0547	GOLAPALLI VINISHA	5000
248	18Q61A0548	GUNAMONI VINAY	10000
249	18Q61A0541	PALANATI SAI VAMSHI -SPOT	10000
250	20Q65A0517	ETIKYALA SAIPAVAN	30000
251	20Q65A0518	GURRAM MAHESH VARDHAN	30000
252	20Q65A0520	S ANUSHA	31000
253	18Q61A05A8	VALAVALA VENKATA SANTOSH	4500
254	18Q61A0558	NAGATI LIKHITH KUMAR	20000
255	18Q61A0553	NAMBI NANDINI	5000
256	18Q61A0448	BOPPA MADHU	6000
257	19Q61A0453	ADHHIKARI PANDU SIVA SAI MANIKANTA	15000
258	19Q61A0454	ALLE KESARI VIJENDRA SIMHA	15000
259	19Q61A0455	ARA SAIPRIYA	23000
260	19Q61A0457	BANDARUU RAJU	20000
261	19Q61A0458	BHEEMANABOINA SAIKIRANN	10000
262	19Q61A0459	DEVESH AGARWAL	10000
263	19Q61A0460	GUDA RAHUL	20000
264	19Q61A0461	GUDURI PRASHANTH KUMAR	22500
265	19Q61A0463	K SRIKANTH	20000
266	19Q61A0464	KARNATI UPENDER REDDY	17500
267	19Q61A0465	KAVALI DINESH KUMAR	35000
268	19Q61A0466	KONDOJU ANKITHA	25000
269	19Q61A0467	KORPURI ARUN KUMAR	15000
270	19Q61A0468	KUDIKALA SWAPNA	/ 15000
271	19Q61A0469	MAMINDLA KARTHIK	7000

PRINCIPAL

Avanthi Institute of Engg. & Tech

Avanthi Institute of Engineering and Technology

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

272	19Q61A0470	M VENKATA SĮVA BHANU GOPAL	17500
273	19Q61A0472	MOTE VAMSHI KRISHNA	8500
274	19Q61A0473	MULAKALA NIREESHA	23000
275	19Q61A0474	MULINTI MOUNIKA	28500
276	19Q61A0475	PUNNA SRIJA	25000
277	19Q61A0477	VENREDDY RASHMITHA	13000
278	19Q61A0478	JAKKIDI MADHURI	20000
279	19Q61A0479	BALAMISU DIVYA	25000
280	19Q61A0480	VENNA UJWALA	35000
281	19Q61A0481	AITHAGONI VENKATESH	30000
282	18Q61A0450	CHELLINGI DURGA SAITEJA	20000
283	18Q61A0463	PIDUGU VIVEK	17500
284	20Q65A0417	ADAPAKA RAVITEJA	40000
285	20Q65A0418	ANNA KEERTHANA	30000
286	20Q65A0419	ATTANI MAHESH YADAV	45000
287	20Q65A0420	BALNAGAR GOVIND	35000
288	20Q65A0421	BHARATHA GEETHA	35000
289	20Q65A0422	CHITTUMALLA SHARATH CHANDRA	30000
290	20Q65A0423	DESHAGANI BHARATH CHANDRA	45000
291	20Q65A0424	GUDISE DIVYA	35000
292	20Q65A0425	KARUPOTHULA SHYAM SUNDER	25000
293	20Q65A0426	KAVATI KARTHIK	30000
294	20Q65A0427	KOTHAPELLI ARUNKUMAR	35000
295	20Q65A0428	MOHITE RAHUL	35000
296	20Q65A0429	THARUN GUNDAPU	30000
297	20Q65A0430	VASAMPALLI SOWJANYA	40000
298	20Q65A0431	VASAMPALLY SRAVANTHI	40000
299	20Q65A0432	VORAGANTI SHASHANK ABHISHEK	35000
300	20Q65A0433	YELIMETI SAI SUMANTH	30000
301	19Q61A0216	AREBOINA KISHORE	35000
302	19Q61A0217	BOJJA VISHWADEEPAK	30000
303	19Q61A0219	MURUGESHAN SIRI SAGAR	30000
304	19Q61A0220	N NAGAVENKATA CHAKRAVARTHI	25000
305	20Q65A0206	BANGARU AKASH CHARY	30000
306	20Q65A0207	BEEMANAPALLI UMA MAHESH	30000
307	20Q65A0209	CH NVSS MURALI KRISHNA	30000
308	20Q65A0211	DASARI DHRUVANITHIN	35000
309	20Q65A0213	GAJJELA DAYANAND	3000
310	20Q65A0214	GAJJELA SRAVANI	, 30000
311	20Q65A0215	KANUKUNTLA ESHWAR	30000

PRINCIPAL Avanthi Institute of Engg. & Tech Guntihabally (V). Abdullanurmet (Mdl) R.R.Dist

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512.

www.aietg.ac.in email: principal.avanthi@gmail.com

312	20Q65A0216	KARRAVULA SHASHIDHAR	35000
313	20Q65A0217	KATIKOJULA SOUMYA	30000
314	20Q65A0218	KORIPALLY ROHITH KUMAR	35000
315	20Q65A0219	M KESHAVULU YADAV	30000
316	20Q65A0220	MAMIDALA SHIVA DEEPAK	30000
317	20Q65A0221	MATHANGI VINEELA	30000
318	20Q65A0222	MEDISHETTI VAMSHI KRISHNA	30000
319	20Q65A0223	MOHAMMAD ABDUL RAHMAN	35000
320	20Q65A0224	MOHAMMAD SOHEL	30000
321	20Q65A0226	MYAKA NANDAKRISHNA	30000
322	20Q65A0227	MYAKALA RAJU	40000
323	20Q65A0229	NAKERAKANTI BHANU PRAKASH	30000
324	20Q65A0230	NALLAMUDI KARTHIKEYA	65000
325	20Q65A0231	35000	
326	20Q65A0232	PADALA ABHINAY	3500
327	20Q65A0233	PAGIDI SHIVA KUMAR	3000
328	20Q65A0234	PENJARLA GANESH	3000
329	20Q65A0235	RAGULA GANESH	3000
330	20Q65A0236	RAYUDU JAGADEESH SAI	3500
331	20Q65A0237	SANDINENI HARISH	3500
332	20Q65A0238	SHAGA RAJU	4000
333	20Q65A0239	SURA MANIKANTA	3000
334	20Q65A0240	VINUKONDA LAXMAN KUMAR	3000
335	20Q65A0241	YOUSUF KHAN	3000
336	19Q61A0308	JINNA SRINIVAS	3200
337	19Q61A0309	PARNE BHEEMARJUNREDDY	2750
338	20Q65A0307	A ANAND	4000
339	20Q65A0308	ANNAREDDY GANESH	3500
340	20Q65A0310	GORLA NAVEEN	4000
341	20Q65A0311	JADHAV SOPAN	4000
342	20Q65A0312	JOGU RAJU	3500
343	20Q65A0313	KANKURTHE NARESH	3250
344	20Q65A0314	KETHAVATH NITISH KUMAR	4000
345	20Q65A0315	M SAI KUMAR	4000
346	20Q65A0316	MARRU THARUN	4000
347	20Q65A0317	PAGADALA SRILEKHA	4000
348	20Q65A0318	RAMAVATH MATHRU	3500
349	20Q65A0319	SABHAVATSAINAIK	3500
350	20Q65A0320	SAMPANGI SURYA KIRAN	4000
351	20Q65A0321	SOMALA GOUTHAMI	0 / 3500

PRINCIPAL

nthi Institute of Engg. & Tech

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

352	20Q65A0322	SOPPARWAR MANESH	35000
353	20Q65A0323	YEDLA VENU GOPALA KRISHNA	42000
354	22Q61E0043	GODUGU SHIVANI	10000
355	22Q61E0044	K GOVARDHANI	17500
356	22Q61E0045	KANDUKURI SHRAVANI	15000
357	22Q61E0046	TEKUMATLA AISHWARYA	15000
358	22Q61E0047	DOKKU PRANATHI	7500
359	22Q61E0048	PALADI MANUSHA	12500
360	22Q61E0049	KURA SAMANTH REDDY	7500
361	22Q61E0050	RANGA PRUDHVI RAJ	10000
362	22Q61E0052	BATHINI AKHILA	7500
363	22Q61E0053	PUTTOJU NIKHITHA	5000
364	22Q61E0054	YATA BHANU PRAKASH	7500
365	22Q61E0055	IYAR AKSHITH	7500
366	22Q61E0056	M SHILPA	12500
367	22Q61E0057	PONNAGANTI SRAVANI	15000
368	22Q61E0058	KASOJU ARUN	10000
369	22Q61E0059	SHAIK MOHAMMED ARIF	15000
370	22Q61E0060	NAGUBANDI KARUNIYA	7500
371	22Q61E0064	KARANI RAMYA	10000
372	22Q61E00A3	KOTHA SRI LAXMI	5000
373	22Q61E00A4	BOLISHETTI SHIVA PRASAD	12500
374	22Q61E00A5	RAKESH M	10000
375	22Q61E00A6	PALLE SRIJA	5000
376	22Q61E00A7	NALAPARAJU UMA	5000
377	22Q61E00A8	SOORA THARUN	10000
378	22Q61E00A9	PALAKSHI NAGA LAXMI	10000
379	22Q61E00B0	CHALLA KUSHAL	10000
380	22Q61E00B1	JANGILI RAMYA	5000
381	22Q61E00B2	KANUKUTLA JAYASRI	5000
382	22Q61E00B3	PANDALA SHILPA	15000
383	22Q61E00B4	NATHI AKHIL	12500
384	22Q61E00B5	SIDDAGONI DILIP GOUD	12500
385	22Q61E00B6	ANYALAPU PRASHANTHI	12500
386	22Q61E00B7	GANGIREDDY TAJASRI	12500
387	22Q61E00B8	DUMMALA VYSHNAVI	12500
388	22Q61E00B9	KOKKULA VASTHAVYA	7500
389	22Q61E00D8	EEDUDHULA VARSHITHA	5000
390	22Q61E00D9	THAMMANENI VENKATA PRIYANKA	12500
391	22Q61E00E0	MOLUGU MAHESHWARI KOMAL	k) 1/0000

PKINCIPAL

Avanthi Institute of Engg. & Tech

Avanthi Institute of Engineering and Technology

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

392	22Q61E00E2	SIRIKONDA SURAJ	5000
393	22Q61E00E3	BOINA NAVYASREE	12500
394	22Q61E00E4	VARKALA BHARATH KUMAR	15000
395	22Q61E00E5	G SHRAVAN KUMAR	10000
396	22Q61E00E6	SYED SALMAN	10000
397	22Q61E00E7	VANGALA SURYATEJA	10000
398	22Q61E00E8	VATIPALLI JAYANTH	10000
399	22Q61E00E9	GODHUMALA TEJASRI	10000
400	22Q61E00F0	SHEIK SANDHANI	10000
401	22Q61E00F1	GORLEY POOJITHA SREE LAXMI	20000
402	22Q61E00F2	PANGA NAGARAJU YADAV	10000
403	22Q61E00F3	LABDE JAYASREE	10000
404	22Q61E00F4	BODDU MANOJ	10000
405	22Q61E00F5	LAKKAKULA SRAVANI	10000
406	21Q61E0007	B HARISH	8000
407	21Q61E0037	GUNJA MADHU KUMAR	8000
408	21Q61E0043	SARITHA S	10000
409	21Q61E0044	РООЛТНА В	14000
410	21Q61E0045	N SRIKANTH	7000
411	21Q61E0046	MADHARAPU RANGA RAO	12500
412	21Q61E0048	YARRAMREDDY CHINNA ANJI REDDY	15000
413	21Q61E0049	J HELKANA	14000
414	21Q61E0050	V KAVERI	10000
415	21Q61E0051	VADDEPALLY PAVITHRA	10000
416	21Q61E0052	BOBBALA SAMATHA	10000
417	21Q61E0053	MUDDU VENKATA SHIVA KUMAR	12500
418	21Q61E0054	SOWMYA MALKAJGIRI	15000
419	21Q61E0055	SOWMYA TADICHETTU	29000
420	21Q61E0056	BEJJAM KARUNAKAR	15000
421	21Q61E0057	MOHAMMAD AFIRID	1500
422	21Q61E0058	KARKOLA KALPANA	1500
423	21Q61E0059	G.SUNITHA	1500
424	21Q61E0060	G ANKITHA	15000
425	21Q61E00A3	B JEEVAN	1500
426	21Q61E00A4	E PAVANKALYAN	15000
427	21Q61E00A6	BADAM PAVAN KUMAR	700
428	21Q61E00A7	MANAMALLA RAJESHWARI	15000
429	21Q61E00A8	MANAVALLA ARAVIND	1500
430	21Q61E00A9	DABBIKAR SOWMYA	1500
431	21Q61E00B0	BONKURI PRANAYA SRI	A 500

PRINCIPAL Avanthi Institute of Engg. & Tech

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

432	21Q61E00B1	BEGAVI SAI KRISHNA	15000
433	21Q61E00B2	SHAIK RAWOOF	15000
434	21Q61E00B3	R THIRUMALESH	15000
435	21Q61E00B4	BANDARU SAI KUMAR	15000
436	21Q61E00B5	KADARI SHIVA PRASAD	15000
437	21Q61E00B6	A HARISH KUMAR	15000
438	21Q61E00B7	Parichi Atchyuth Balaramasarma	15000
439	21Q61E00B8	BUSHIGAMPALA LIKHITHA	15000
440	21Q61E00B9	RAGIPANI AKHIL CHARY	10000
441	21Q61E00C0	JUVERIA TABASSUM	15000
442	21Q61E00F8	MOHAMMED ANWARPASHA	15000
443	21Q61E00F9	KANDULA MAHANANDA REDDY	12500
444	21Q61E00G0	SK BABAR	15000
445	21Q61E00G1	YAMJALA BHAVANA	16000
446	21Q61E00G2	GANGANI MOUNIKA	15000
447	21Q61E00G3	NAGOJU LAXMI PRASANNA	10000
448	21Q61E00G5	YELLANKI SRIKANTH	15000
449	21Q61E00G6	GUNDLA DURGA	15000
450	21Q61E00G7		
451	21Q61E00G8	TUSAMAD SANJANA	15000
452	21Q61E00G9	JILLA SRIDHAR	15000
453	21Q61E00H1	CH SHIVA SAI GUPTHA	15000
454	21Q61E00H2	KODIGANTI VIJAYA LAXMI	15000
455	21Q61E00H3	PEDDINTI SUSHMA REDDY	15000
456	21Q61E00H4	MUSKU PREETHI	15000
457	22Q61D5713	DARAM PRAVEEN	17000
458	22Q61D5805	KUPPARAJU PRANAVI	9500
459	22Q61D5806	MOHD AFZAL	17000
460	22Q61D5807	THUMMALA SANTHOSH	17000
461	22Q61D5808	VENKATESWARLU DUGGEMPUDI	57000
462	22Q61D5809	PALAPARTHI ALEKYA	14500
463	21Q61D5713	KASARAMONI KUMAR	17000
464	21Q61D5714	NELANTI PRIYANKA	17000
465	21Q61D5715	P ARUNA	17000
466	21Q61D5810	GURRALA SRI KANYA	57000
467	21Q61D5811	KOMPALLI NIKITHA	17000
468	21Q61D5812	PATTIPAKA HARIKA	27000
469	21Q61D5814	V SOWJANYA	9500
470	21Q61D0718	BODA HARIPRIYA	12000
471	21Q61D0720	DAYYALA LENINA	19500

PRINCIPAL
Avanthi Institute of Engg. & Tech

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

472	21Q61D0721	DONGRA SAI MADHAV	12000
473	21Q61D0722	RAVI ETTIMALLA	14500
474	22Q61A05C1 KOTE SRAVAN	70000	
475	22Q61A05C6	MOHD SAIF UDDIN	70000

Total Students Count: 475 Total Amount: 99,58,500

PRINCIPAL
PRINCIPAL
Avanthi Institute of Engg. & Tech
Sunihanally (V). Abdullanumel (Mdl) R.R.Dist

To The Director, AVIH, Grunthapolly.

Date: 29/3/2023, Gunthapely.

Sul 1- Reg. for fee concession

Respected madem,

for lost I years. please corpler my fee concession in his regul.

The needful weden my fee amount is 70,000 per year.

Thanks you maken I mohd Saif uddin rolling not 22 061A05C6.

28

yours faithfully. mond sert uddin 22061 1056.

GARL PRINCIPAL Avanthi Institute of Engg. & Tech Guntihapally (V). Abduflapurme! (Mdl) R.R.Dist

06-03-2025, Monday.

The principal sir, Auth, Gunthapally,

Sub! - Requesting for fee Concession

Sir, Sam ch. Akhil from III-44- 21065AO412, AUIH, Sir,

I was not ready to pay fee to the dept. Because we are from Middle Class family. My father not ready for that much fee, he was just a watchman, so please grant me Permission about fee Concession (30000).

Dece Abol

Thanking You sir,

Tours Paithbelly ch. Akil, 219611850412.

PRINCIPAL

Avanthi Institute of Engg. & Tech

Guntihapally (V). Abdullanumativi and Dist

12/05/2023, Hyderabad.

Respected Principal Sig,

Jam Jitta Raja She Ka R (19061A0538) IV Year. We are economically very poor Sign. My Tather is a farmer lost Year Because of Raining My Fredid was damaged me affec concession so Please sive

Sig (8000)

Thanleing you Sig

Decepted DV

> PRINCIPAL Avanthi Institute of Engg. & Tech Guntihapally (V). Abdullanismes see all 0 0 Dies

Young faithful J. DaJa She 1000 (1906/A0538 CARMS

To, Respected principal sir, AUH Gunthapally

Earn Thimma Reddy maherhwara Reddy (19061A0585) . from 14 YR, my mother ?s a scapped pay see (5000) please give me the concession.

your's fairthfully 19961A05B1 Mahermoara HIVA

Avanthi Institute of Engg. & Tech Guntihapally (V). Abdullanurmet (Mdl) R R Diet

To

The principal,

AVIH,

Gunthapally.

Sub: Requesting for fee Concussion

Respected sir,

I am c. Swetha from III year of AVIH

ROLINO: 21065 A0208. I am writing this letter to

inform you about my fee concession of Rs - 33500/-.

Because my 1800 Sister got a madriage proposal. financially

my family is in bad situation. As my father has to make

marriage successfully. So please give me permission for

sullifee Concession.

Thanking you

PRINCIPAL

Avanthi Institute of Engg. & Tech Guntihapally (V), Abdullapurmet (Mdl) R.R.Dist yours faithfully C. Swetha 2186580208. TO

The Director Mam,

AVIH,

Gunthapally.

Sub: Real westing for fee Concession.

Respected mam,

I am G. Mahesh from III year

ROLINO: 20Q61A0209. I want fee Concession of Rs-25000/- Because I have only one parent i,e My Mother. She was unable to take care of mynfinancially as I have two Brothers to December fee Concession. look after. So please accept my orequest of

Thanking you

PRINCIPAL Avanthi Institute of Engg. & Tech Guntihapally (V), Abdullapurmet (MdI) R.R.Dist

yours faithfully 5. Mahesh 20Q61A0209

10-march-2023. Gunthapally,

To, The Respected Sir, ANIH, Hyderabad.

Subject: requesting for fee amount.

I am kasaramon's kumar from M. Tech 11 year 212 6105713. I am requesting for fee amount because of family problems. so, please six total due amount 17000/Requesting that fee amount please, grant me permission.

December December

Thanking you

PRINCIPAL
Avanthi Institute of Engg. & Tech
Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

Your's lovingly,

Kasaramon's

kumar,

M. Tech 11 year

2106105713.

24/ morch /2023 J-SHIRISH 20Q61A0435 3rd year

TO

The principal

AVH

aunthopolly, tryd

10 ch. 12

subject :- Requested to give Lee concenssion.

Respected sir,

I am J. SHIRISH of voll no . 20061 A0 435 studying 31d year: 5 requested to give tec concession of RS. 15000/- as my mother hand is fractured and she is hospitalised and there is no money to pay fere as the family income is very less.

thonk you s

PRINCIPAL Avanthi Institute of Engg. & Tech Guntihapally (V). Abdullapurmet (MdI) R.R.Dist

yours truly, J. Shirish, 20061A0435 Requesting Letter

From:-Genthapally, Date:- march /29/2023

To
The principal,
AVIH,
Generally,
turderabord.

Sub :- Requesting for Concession fee

This is M. Royu from wyfran Roll no: 200,65 A0227 Jam wable to college fee sr. Due to Jam a open Orphan children So Jam Slayling inthe orphanage. Fam unable to college fee 3000/-

Thank you

Jak Jak

PRINCIPAL

Avanthi Institute of Engg. & Tech

Guntihapally (V), Abdullanumet (Mdl) R.R. Diet

your's faithfully M. Raigu ny you 202,65 A0227

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad)
NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

Gunthapally,

Date: 09-11-2023.

To

The Governing Body (GB), Avanthi Institute of Engineering & Technology, Gunthapally.

Sub:Letter of request sanction of Merit Scholarship amount from college budget.

Reference: 1. Avanthi Freeship Internal Policy.

Dear Sir/Madam

This is to request you please sanction amount of Rs. 1,28,000 (One lakh twenty eight thousand Rupees) for 32 students into the college budget for the academic year 2022-23.

The details are also enclosed for your consideration

Thanking you sir

Yours faithfully,

PRINCIPAL

Avanthi Institute of Engg. & Tech
Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

Merit Scholarship Students List with Amount Academic Year: 2022-2023

The following is the list of students 32 are selected from Avanthi Freeship Policy. As per the merit the academic toppers are selected and given among them will receive prizes, with the first topper awarded Rs. 5000 and the second topper receiving Rs. 3000.

S.No	Branch	Year	HALLTICKET	STUDENT NAME	MERIT	AMOUNT
1	CSE	II	21Q61A0564	JEREDDY MANOJ KUMARREDDY	I	5000
2	CSE	II	21Q61A05D0	SHERI SHIVAJI	II	3000
3	CSM	II	21Q61A6601	AKULA SINDHU	I	5000
4	CSM	II	21Q61A6612	GOLI THARUN	II	3000
5	CSD	II	21Q61A6708	BHUKYA AJAY KUMAR	I	5000
6	CSD	II	21Q61A6720	GALVA ARCHANA	II	3000
7	ECE	II	21Q61A0423	KATRAVATH RAJESH	1	5000
8	ECE	II	22Q65A0404	JAKKULA BHAVISHYA	II	3000
9	EEE	II	22Q65A0201	GADAM SRUTHI	I	5000
10	EEE	II	21Q61A0206	JAMMALA VIJAY KUMAR	II	3000
11	MECH	II	21Q61A0302	MANDULA NAVEEN	I	5000
12	MECH	II	21Q61A0305	ALAKUNTLA BHARATH	II	3000
13	CSE	III	20Q61A0510	BETHAPUDI SRIJA	I	5000
14	CSE	III	20Q61A0581	TIRUMALA ABHIRAMACHARY	II	3000
15	CSM	III	20Q61A6616	PARUPALLY GIRIJA	I	5000
16	CSM	III	20Q61A6623	CHINTHAKINDI MURARI	II	3000
17	CSD	III	20Q61A6704	м јуотні	I	5000
18	CSD	III	20Q61A6706	GOUTE AKHILA	II	3000
19	ECE	III	20Q61A0431	YERRA MOUNIKA	I	5000
20	ECE	III	21Q65A0403	GUMMADI SAHASRA	II	3000
21	EEE	III	21Q65A0201	BEERLA SAI DEEKSHITHA	I	5000
22	EEE	III	21Q65A0205	MAISA DEEPIKA	II	3000
23	MECH	III	21Q65A0304	SEETHA SINDHU	I	5000
24	MECH	Ш	20Q61A0303	S SHIVAJI	II	3000
25	CSE	IV	19Q61A05B1	POLASALIKITHHA	I	5000

Avanthi Institute of Engg. & Tech

Guntihapally (V). Abdullapurmer (Mdl) R.R.Dist
Avanthi Institute of Engineering and Technology

(Approved by AICTE, Recg. By Govt. of T.S& Affiliated to JNTUH, Hyderabad) NAAC "B++" Accredited Institute

Gunthapally (V), Abdullapurmet(M), RR Dist, Near Ramoji Film City, Hyderabad -501512. www.aietg.ac.in email: principal.avanthi@gmail.com

26	CSE	IV	19Q61A0595	PUNNA SAI MOUNIKA	II	3000
27	ECE	IV	19Q61A0440	PEESU ALEKYA	I	5000
28	ECE	IV	19Q61A0401	AITHA SWAMYNATH	II	3000
29	EEE	IV	19Q61A0209	KORRA NAVEEN	I	5000
30	EEE	IV	19Q61A0206	J PRAVEEN KUMAR PATEL	II	3000
31	MECH	IV	19Q61A0308	JINNA SRINIVAS	I	5000
32	MECH	IV	19Q61A0303	KOTHUR THARUN	II	3000

PRINCIPAL

Avanthi Institute of Engg. & Tech Guntihapally (V). Abdullapurmet (Mdl) R.R.Dist

Total Students Count: 32

Total Amount: Rs. 1,28,000